December 17, 2021

What effect does adult ADHD have on sleep?

A team of Spanish researchers performed a systematic search of the medical literature and found 28 studies that could be included in a series of meta-analyses of specific measures of sleep impairment. Except for a single meta-analysis with eight studies and 1,713 participants, however, all involved just three to five studies apiece, with anywhere from 121 to just over a thousand participants.

The team examined three sorts of measures:

·        Subjective measures, based on self-reporting by ADHD patients.
·        Polysomnography is an objective sleep study in which the subject is wired up and studied by technicians in a lab, usually overnight, monitoring multiple body functions, such as brain activity, eye movements, muscle activation, and heart rhythm.
·        Actigraphy, a non-invasive objective means of monitoring sleep. The subject wears an actimetry monitor, which is usually worn like a wristwatch on the non-dominant arm. Because it is minimally intrusive, the subject may wear it for a week or more while engaging in normal activities.

In the subjective measures, adults with ADHD generally reported substantially higher sleep impairments than non-ADHD controls. In the largest meta-analysis, covering eight studies and 1,713 participants, adults with ADHD reported moderately longer latency times for falling asleep than controls. In meta-analyses of five studies with between 834 and 1,130 participants, they also reported moderately poorer sleep quality, more frequent night awakenings, being moderately less rested upon awakening in the morning, and moderate-to-strongly greater daytime sleepiness. There was no significant difference in perceived sleep duration.

Polysomnography measures, on the other hand, failed to confirm these subjective impressions. No significant differences were found between adults with ADHD and controls for the initial latency period until onset of sleep, sleep efficiency, waking after the onset of sleep, total sleep time, stage one or stage two sleep, slow-wave sleep, REM (rapid eye movement) sleep, and latency period until REM sleep.

As mentioned above, polysomnography is conducted in lab settings, and therefore inevitably diverges from normal patterns of behavior. Actigraphy helps bridge that gap, by monitoring normal behavior, though with more limited types and precision of data analysis.

And indeed, a meta-analysis of four studies with 222 participants confirmed self-reports that sleep efficiency was moderate to strongly lower in adults with ADHD and that the latency period until the onset of sleep was markedly longer. On the other hand, it found no significant difference in true sleep.

The researchers also looked at prevalence statistics. Whereas the prevalence of sleep-onset insomnia in the general population has been reported in the range of 13 to 15 percent, a meta-analysis of four studies with 466 participants found fully two-thirds of adults with ADHD reporting insomnia, a greater than four-to-one ratio. Similarly, a meta-analysis of three studies with 458 participants found one-third reporting daytime sleepiness, which is twice the rate reported in the general population.

There was no sign of publication bias in any of these results. The authors cautioned, however, about the small number of studies involved, stating this "compromises the generalizability of the findings." Also, some studies included patients undergoing pharmacological treatment for ADHD, "increasing the risk of confounding results."

Moreover, "Sleep onset latency and sleep efficiency were not significantly impaired in the polysomnography, which was incongruent with the actigraphy results. This may be due to a difference in the evaluation context. Whereas polysomnography is considered the gold-standard measure to objectively assess sleep architecture, actigraphy shows a more ecological approach, with the evaluation being conducted in a more naturalistic context for a longer period. However, actigraphy has more environmental influence, which can compromise the data recorded and the interpretation of the results, whereas, in polysomnography, multiple variables can be controlled in the laboratory setting to increase the internal validity of the results. On the contrary, polysomnography studies can produce artifacts due to the unusual circumstances in the setting, so results may need to be interpreted with caution."

The authors concluded, "The results found in the present study show the relevance of addressing sleep concerns in adult populations diagnosed with neurodevelopmental conditions."

Jorge Lugo, Christian Fadeuilhe, Laura Gisbert, Imanol Setiena, Mercedes Delgado, Montserrat Corrales, Vanesa Richarte, Josep Antoni Ramos-Quiroga, "Sleep in adults with autism spectrum disorder and attention-deficit/hyperactivity disorder: A systematic review and meta-analysis," EuropeanNeuropsychopharmacology (2020),https://doi.org/10.1016/j.euroneuro.2020.07.004.

Related posts

No items found.

Meta-analysis Finds Little Evidence in Support of Game-based Digital Interventions for ADHD

ADHD treatment usually involves a combination of medication and behavioral therapy. However, medication can cause side effects, adherence problems, and resistance from patients or caregivers. 

Numerous systematic reviews and meta-analyses have evaluated the effects of non-pharmacological interventions on ADHD. With little research specifically examining game-based interventions for children and adolescents with ADHD or conducting meta-analyses to quantify their treatment effectiveness, a Korean study team performed a systematic search of the peer-reviewed medical literature to do just that.  

The Study: 

To be included, studies had to be randomized controlled trials (RCTs) that involved children and adolescents diagnosed with ADHD. The team excluded RCTs that included participants with psychiatric conditions other than ADHD.  

Eight studies met these standards. Four had a high risk of bias.  

Meta-analysis of four RCTs with a combined total of 481 participants reported no significant improvements in either working memory or inhibition from game-based digital interventions relative to controls. 

Likewise, meta-analysis of three RCTs encompassing 160 children and adolescents found no significant improvement in shifting tasks relative to controls. 

And meta-analysis of two RCTs combining 131 participants reported no significant gains in initiating, planning, organizing, and monitoring abilities, nor in emotional control

The only positive results were from two RCTs with only 90 total participants that indicated some improvement in visuospatial short-term memory and visuospatial working memory.  

There was no indication of effect size, because the team used mean differences instead of standardized mean differences.  

Conclusion:

The team concluded, “The meta-analysis revealed that game-based interventions significantly improved cognitive functions: (a) visuospatial short-term memory … and (b) visuospatial working memory … However, effects on behavioral aspects such as inhibition and monitoring … were not statistically significant, suggesting limited behavioral improvement following the interventions.” 

Simply put, the current evidence does not support the effectiveness of game-based interventions in improving behavioral symptoms of ADHD in children and adolescents. The only positive results were from two studies with a small combined sample size, which does not qualify as a genuine meta-analysis. All the other meta-analyses performed with larger sample sizes reported no benefits. 

Understanding Teen Health and Well-being in ADHD: A Fresh Perspective from the CDC

Recent research from the Centers for Disease Control and Prevention (CDC) highlights distinct health and social-emotional challenges faced by teens diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD). This study, published in the Journal of Developmental and Behavioral Pediatrics, offers critical insights directly from the teens themselves, providing a unique view often missed when relying solely on parent or clinical reports. 

Researchers analyzed nationally representative data from July 2021 through December 2022, comparing self-reported experiences of teens aged 12 to 17 with and without ADHD. Approximately 10% of teenagers had an ADHD diagnosis, and the findings reveal specific areas where teens with ADHD face notable difficulties. 

Teenagers with ADHD reported significantly higher rates of bullying victimization and struggles in making friends compared to their peers. Surprisingly, they were less likely to report a lack of peer support, suggesting complexities in how they perceive friendships and social networks. The study underscores the importance of directly engaging teens in assessing their social relationships, rather than solely relying on parental perspectives. 

Sleep difficulties emerged as another critical issue for teens with ADHD. About 80% reported problems like difficulty waking up and irregular wake times, markedly higher than their non-ADHD counterparts. Such disruptions can exacerbate attention difficulties and emotional regulation issues, further complicating daily life for these teens. 

Excessive screen time also stood out, with nearly two-thirds of teens with ADHD spending over four hours daily on screens, excluding schoolwork. This high screen usage is concerning, given its potential negative impact on physical and mental health, including sleep quality and social interactions. 

Notably, the study found no significant differences in physical activity levels or concerns about weight between teens with and without ADHD. This finding contrasts with previous studies that have highlighted lower physical activity among children with ADHD, suggesting the need for continued research on how physical activity is measured and encouraged in this population. 

The study’s authors emphasize the importance of health promotion interventions tailored specifically for teens with ADHD. By directly engaging teens and considering their unique perspectives, interventions can better address social-emotional well-being and healthy lifestyle behaviors, ultimately improving long-term outcomes for this vulnerable group. 

Overall, this research provides compelling evidence for healthcare providers, educators, and families to focus on supporting teens with ADHD in areas of social skills, sleep hygiene, and healthy screen time habits. Such targeted support can significantly enhance the quality of life and health outcomes for adolescents navigating the challenges of ADHD. 

Meta-analysis Reports No Significant Evidence for Efficacy of Neuromechanistic Treatments for Adult ADHD

The Background on ADHD Treatments, rTMS and tDCS:

Methylphenidate is known as the gold-standard treatment for ADHD, increasing dopamine concentrations and helping to focus. However, these psychostimulants may be less well-tolerated in adults. Adverse effects include decreased appetite, nausea, racing heartbeat, restlessness, nervousness, and insomnia. 

Neurofeedback is a non-pharmaceutical treatment that combines cognitive behavioral therapy techniques like conditioning and positive reinforcement with electroencephalography (EEG) feedback. Electrodes are placed on specific brain areas, guiding patients to regulate their brainwave activity. 

Repetitive transcranial magnetic stimulation (rTMS) uses electromagnetism to induce an electric field by passing a magnetic field through the scalp. Transcranial direct current stimulation (tDCS), on the other hand, directly applies an electric current through the scalp. Both repetitive transcranial magnetic stimulation (rTMS) and tDCS primarily target the outermost layers of neurons, as they are non-invasive methods. Nevertheless, both techniques are believed to affect deeper layers through interconnected neuronal networks.  

The Study:

A French research team conducted a systematic search of the peer-reviewed medical literature to perform a meta-analysis to explore the efficacy of these experimental treatment techniques. 

Eight studies – four using rTMS and another four using tDCS – met the inclusion criteria. Studies had to be randomized controlled trials (RCTs), and had to involve multiple sessions of treatment. Participants had to be adults previously diagnosed with ADHD.  

Outcomes were measured through self-rated scales, neuropsychological tests, and electrophysiological pre-post evaluations. 

Separate meta-analyses of the four tDCS RCTs combining 154 participants and of the four rTMS RCTs encompassing 149 participants likewise reported no significant improvements. In all cases variation in outcomes between studies was moderate, and there were no signs of publication bias. 

The Conclusion on Neuromechanistic Treatments for ADHD:

Meta-analysis of all eight studies with a combined total of 421 participants reported no significant improvements over controls. Narrowing down to studies that used sham controls likewise produced no significant improvements. So, despite the title of this study, these neuromechanistic treatments do not appear to be the future of treatment for adult ADHD.