October 20, 2021

Systematic review finds association between ADHD and gaming disorder

The specific type of gaming disorder (GD) that is the focus of this review is "disordered video-gaming," or more precisely the addictive potential of interactive video games played on mobile phones, gaming consoles, individual computers, and over networks. Certain characteristics of such games, including structured rewards and multi-modal sensory stimulation, contribute to that addictive potential. Networked games also allow for direct social engagement through role playing and cooperation with others. They also lead to further opportunities for participation in a wider community of players on forums outside gameplay, such as discussion platforms, video play-through analyses, or live-streaming.

The authors performed a systematic search of the peer-review literature, and identified 29 studies exploring the relationship between Addend GD.

All studies found a positive association between ADHD and GD. Of studies reporting effect sizes, seven reported small effect sizes, three reported medium ones, and three reported large ones. There was a similarly wide variety of reported effect sizes among studies that reported correlations between ADHD scales and GD scales. These ranged from r = .12 (small) to r = .45(large).

Three studies examined longitudinal outcomes. One reported that lower ADHD scores at baseline predicted positive long-term recovery. Another noted that GD was more likely to develop into significant psychiatric symptoms and poorer educational outcomes two years later. The third study found that higher ADHD and GD scores were associated with higher incidences of delinquent or aggressive behaviors and externalizing problems, as compared to a sample with ADHD but not GD. All three studies reported that ADHD was a risk factor for the development of problematic gaming behavior. There was no clear indication of the reverse relationship - GD predicting ADHD.

The authors concluded, "This review found a consistent positive association between ADHD and GD, particularly for the inattention subscale. The strength of the association between ADHD and GD was variable. On symptom severity ratings, there was a positive relationship between scores measuring GD and ADHD pathology in some studies. Fewer studies in this review showed hyperactivity was commonly associated with GD. It is well known that hyperactivity in ADHD tends to improve significantly with age. It is possible that the natural progression of the disorder resulted in lower rates of hyperactivity. Such a hypothesis is strengthened by findings of a stronger association with hyperactivity among children aged between 4 and 8."

Ideas for policy interventions to address disordered video gaming include:

·        Parental controls on games.
·        Warning messages similar to those on cigarette packaging.
·        Organizing help services for gamers.

The authors called for further study on:

·        Effectiveness of intervention strategies.
·        The contribution of GD to the dysfunction associated with ADHD.
·        The relationship between the content of play (e.g., violence) and motivation to play (e.g., escapism) and ADHD symptoms.
role-playin·        The role of depression, anxiety, and another comorbidity in mediating the relationship between ADHD and GD

"Clinicians should beware that ADHD is common in GD," the authors emphasized, "and we, therefore, recommend that ADHD is screened for when evaluating GD as part of routine practice. This would ensure interventions aimed at ADHD can be successfully combined with GD treatment, potentially improving patient outcomes."

Pravin Dullur, Vijay Krishnan, Antonio MendozaDiaz, "A systematic review of the intersection of attention-deficit hyperactivity disorder and gaming disorder," Journal of Psychiatric Research133 (2021), 212-222, https://doi.org/10.1016/j.jpsychires.2020.12.026.

Related posts

No items found.

Meta-analysis Finds Little Evidence in Support of Game-based Digital Interventions for ADHD

ADHD treatment usually involves a combination of medication and behavioral therapy. However, medication can cause side effects, adherence problems, and resistance from patients or caregivers. 

Numerous systematic reviews and meta-analyses have evaluated the effects of non-pharmacological interventions on ADHD. With little research specifically examining game-based interventions for children and adolescents with ADHD or conducting meta-analyses to quantify their treatment effectiveness, a Korean study team performed a systematic search of the peer-reviewed medical literature to do just that.  

The Study: 

To be included, studies had to be randomized controlled trials (RCTs) that involved children and adolescents diagnosed with ADHD. The team excluded RCTs that included participants with psychiatric conditions other than ADHD.  

Eight studies met these standards. Four had a high risk of bias.  

Meta-analysis of four RCTs with a combined total of 481 participants reported no significant improvements in either working memory or inhibition from game-based digital interventions relative to controls. 

Likewise, meta-analysis of three RCTs encompassing 160 children and adolescents found no significant improvement in shifting tasks relative to controls. 

And meta-analysis of two RCTs combining 131 participants reported no significant gains in initiating, planning, organizing, and monitoring abilities, nor in emotional control

The only positive results were from two RCTs with only 90 total participants that indicated some improvement in visuospatial short-term memory and visuospatial working memory.  

There was no indication of effect size, because the team used mean differences instead of standardized mean differences.  

Conclusion:

The team concluded, “The meta-analysis revealed that game-based interventions significantly improved cognitive functions: (a) visuospatial short-term memory … and (b) visuospatial working memory … However, effects on behavioral aspects such as inhibition and monitoring … were not statistically significant, suggesting limited behavioral improvement following the interventions.” 

Simply put, the current evidence does not support the effectiveness of game-based interventions in improving behavioral symptoms of ADHD in children and adolescents. The only positive results were from two studies with a small combined sample size, which does not qualify as a genuine meta-analysis. All the other meta-analyses performed with larger sample sizes reported no benefits. 

Understanding Teen Health and Well-being in ADHD: A Fresh Perspective from the CDC

Recent research from the Centers for Disease Control and Prevention (CDC) highlights distinct health and social-emotional challenges faced by teens diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD). This study, published in the Journal of Developmental and Behavioral Pediatrics, offers critical insights directly from the teens themselves, providing a unique view often missed when relying solely on parent or clinical reports. 

Researchers analyzed nationally representative data from July 2021 through December 2022, comparing self-reported experiences of teens aged 12 to 17 with and without ADHD. Approximately 10% of teenagers had an ADHD diagnosis, and the findings reveal specific areas where teens with ADHD face notable difficulties. 

Teenagers with ADHD reported significantly higher rates of bullying victimization and struggles in making friends compared to their peers. Surprisingly, they were less likely to report a lack of peer support, suggesting complexities in how they perceive friendships and social networks. The study underscores the importance of directly engaging teens in assessing their social relationships, rather than solely relying on parental perspectives. 

Sleep difficulties emerged as another critical issue for teens with ADHD. About 80% reported problems like difficulty waking up and irregular wake times, markedly higher than their non-ADHD counterparts. Such disruptions can exacerbate attention difficulties and emotional regulation issues, further complicating daily life for these teens. 

Excessive screen time also stood out, with nearly two-thirds of teens with ADHD spending over four hours daily on screens, excluding schoolwork. This high screen usage is concerning, given its potential negative impact on physical and mental health, including sleep quality and social interactions. 

Notably, the study found no significant differences in physical activity levels or concerns about weight between teens with and without ADHD. This finding contrasts with previous studies that have highlighted lower physical activity among children with ADHD, suggesting the need for continued research on how physical activity is measured and encouraged in this population. 

The study’s authors emphasize the importance of health promotion interventions tailored specifically for teens with ADHD. By directly engaging teens and considering their unique perspectives, interventions can better address social-emotional well-being and healthy lifestyle behaviors, ultimately improving long-term outcomes for this vulnerable group. 

Overall, this research provides compelling evidence for healthcare providers, educators, and families to focus on supporting teens with ADHD in areas of social skills, sleep hygiene, and healthy screen time habits. Such targeted support can significantly enhance the quality of life and health outcomes for adolescents navigating the challenges of ADHD. 

Meta-analysis Reports No Significant Evidence for Efficacy of Neuromechanistic Treatments for Adult ADHD

The Background on ADHD Treatments, rTMS and tDCS:

Methylphenidate is known as the gold-standard treatment for ADHD, increasing dopamine concentrations and helping to focus. However, these psychostimulants may be less well-tolerated in adults. Adverse effects include decreased appetite, nausea, racing heartbeat, restlessness, nervousness, and insomnia. 

Neurofeedback is a non-pharmaceutical treatment that combines cognitive behavioral therapy techniques like conditioning and positive reinforcement with electroencephalography (EEG) feedback. Electrodes are placed on specific brain areas, guiding patients to regulate their brainwave activity. 

Repetitive transcranial magnetic stimulation (rTMS) uses electromagnetism to induce an electric field by passing a magnetic field through the scalp. Transcranial direct current stimulation (tDCS), on the other hand, directly applies an electric current through the scalp. Both repetitive transcranial magnetic stimulation (rTMS) and tDCS primarily target the outermost layers of neurons, as they are non-invasive methods. Nevertheless, both techniques are believed to affect deeper layers through interconnected neuronal networks.  

The Study:

A French research team conducted a systematic search of the peer-reviewed medical literature to perform a meta-analysis to explore the efficacy of these experimental treatment techniques. 

Eight studies – four using rTMS and another four using tDCS – met the inclusion criteria. Studies had to be randomized controlled trials (RCTs), and had to involve multiple sessions of treatment. Participants had to be adults previously diagnosed with ADHD.  

Outcomes were measured through self-rated scales, neuropsychological tests, and electrophysiological pre-post evaluations. 

Separate meta-analyses of the four tDCS RCTs combining 154 participants and of the four rTMS RCTs encompassing 149 participants likewise reported no significant improvements. In all cases variation in outcomes between studies was moderate, and there were no signs of publication bias. 

The Conclusion on Neuromechanistic Treatments for ADHD:

Meta-analysis of all eight studies with a combined total of 421 participants reported no significant improvements over controls. Narrowing down to studies that used sham controls likewise produced no significant improvements. So, despite the title of this study, these neuromechanistic treatments do not appear to be the future of treatment for adult ADHD.