June 13, 2025

Study Finds Association Between Childhood ADHD and Poor Dental Health

The Spanish National Health Survey tracks health care outcomes through representative samples of the Spanish population. 

A Spanish research team used survey data to explore the relationship between ADHD symptoms and dental and gum health in a representative sample of 3,402 Spanish children aged 6 to 14.

While previous studies have found associations between ADHD and poor dental health, they have not fully accounted for such important determinants of poor oral health as socioeconomic status, dental hygiene, or diet. 

The team therefore adjusted for sociodemographic factors, lifestyle variables, and oral hygiene behaviors. More specifically, they adjusted for sex, age, social class, parental education, exposure to tobacco smoke, consumption of sweets, consumption of sugary drinks, use of asthma or allergy medication, adequate oral hygiene behavior of children, adherence to regular dental visits, parental adequate oral hygiene behavior, and parental adherence to regular dental visits.

With those adjustments, children with ADHD symptoms had over twice the incidence of dental caries (cavities) as their counterparts without ADHD symptoms.

Tooth extractions and dental restorations also occurred with over 40% greater frequency in children with ADHD symptoms.

Gum bleeding, a sign of gum disease, was more than 60% more common among children with ADHD symptoms than among their non-ADHD peers.

Importantly, excluding children with daily sugar consumption, which left 1,693 children in the sample, made no difference in the outcome for cavities.

Excluding children with poor oral hygiene habits, which left 1,657 children in the sample, those with ADHD had 2.5-fold more caries than their non-ADHD counterparts.

Excluding children of low social class, which left 1,827 children in the sample, those with ADHD had 2.6-fold more caries than their non-ADHD counterparts.

Turning to a different method to address potential confounding factors, the team used nearest-neighbor propensity score matching to create virtual controls. This compared 461 children with ADHD to 461 carefully matched children without ADHD.

This time, children with ADHD symptoms had just under twice the incidence of cavities as their counterparts without ADHD symptoms, but 60% more tooth extractions and about 75% more dental restorations. The difference in gum bleeding became nonsignificant.

Noting that “The increased risk of caries was maintained when the analyses were restricted to middle/high social class families and children with low sugar intake, good oral hygiene behaviors and regular dental visits,” the team concluded, “Children with ADHD symptoms in Spain had worse oral health indicators than those without ADHD symptoms. Our results suggest that the association of ADHD symptoms with caries was independent of socioeconomic level, cariogenic diet, frequency of toothbrushing, and dental visits.”

Lucía Fernández-Arce, José Manuel Martínez-Pérez, Miguel García-Villarino, María Del Mar Fernández-Álvarez, Rubén Martín-Payo, and Alberto Lana, “Symptoms of Attention Deficit Hyperactivity Disorder and Oral Health Problems among Children in Spain,” Caries Research (2025), 59(1):35-45, https://doi.org/10.1159/000541013.

Related posts

Exploring Gut Microbiota and Diet in Autism and ADHD: What Does the Research Say?


In recent years, there has been growing interest in understanding the connection between our gut microbiota (the community of microorganisms in our digestive system) and various neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). A new study by Shunya Kurokawa and colleagues dives deeper into this area, comparing dietary diversity and gut microbial diversity among children with ASD, ADHD, their normally-developing siblings, and unrelated volunteer controls. Let's unpack what they found and what it means.

The Study Setup

The researchers recruited children aged 6-12 years diagnosed with ASD and/or ADHD, along with their non-ASD/ADHD siblings and the unrelated non-ASD/ADHD volunteers. The diagnoses were confirmed using standardized assessments like the Autism Diagnostic Observation Schedule-2 (ADOS-2). The study looked at gut microbial diversity using advanced DNA extraction and sequencing techniques, comparing alpha-diversity indices (which reflect the variety and evenness of microbial species within each gut sample) across different groups. They also assessed dietary diversity through standardized questionnaires.

Key Findings

The study included 98 subjects, comprising children with ASD, ADHD, both ASD and ADHD, their non-ASD/ADHD siblings, and the unrelated controls. Here's what they discovered:

Gut Microbial Diversity: The researchers found significant differences in alpha-diversity indices (like Chao 1 and Shannon index) among the groups. Notably, children with ASD had lower gut microbial diversity compared to unrelated neurotypical controls. This suggests disorder-specific differences in gut microbiota, particularly in children with ASD.

Dietary Diversity: Surprisingly, dietary diversity (assessed using the Shannon index) did not differ significantly among the groups. This finding implies that while gut microbial diversity showed disorder-specific patterns, diet diversity itself might not be the primary factor driving these differences.

What Does This Mean?

The study highlights intriguing connections between gut microbiota and neurodevelopmental disorders like ASD and ADHD. The lower gut microbial diversity observed in children with ASD points towards potential links between gut health and the pathophysiology of ASD. Understanding these connections is crucial for developing targeted therapeutic interventions.

Implications and Future Directions

This research underscores the importance of considering gut microbiota in the context of neurodevelopmental disorders. Moving forward, future studies should account for factors like co-occurrence of ASD and ADHD, as well as carefully control for dietary influences. This will help unravel the complex interplay between gut microbiota, diet, and neurodevelopmental disorders, paving the way for innovative treatments and interventions.

In summary, studies like this shed light on the intricate relationship between our gut health, diet, and brain function. By unraveling these connections, researchers are opening new avenues for understanding and potentially treating conditions like ASD and ADHD.

April 9, 2024

Dose-dependent Association Found Between Childhood General Anesthesia and ADHD

Childhood General Anesthesia and Subsequent Diagnoses of ADHD

In December 2016, the U.S. Food and Drug Administration (FDA) warned “that repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” The FDA adds, “Health care professionals should balance the benefits of appropriate anesthesia against the potential risks, especially for procedures lasting longer than 3 hours or if multiple procedures are required in children under 3 years,” and “Studies in pregnant and young animals have shown that using these drugs for more than 3 hours caused widespread loss of brain nerve cells.”

That raises a concern that such exposure could lead to increased risk of psychiatric disorders, including ADHD.

Noting “There are inconsistent reports regarding the association between general anesthesia and adverse neurodevelopmental and behavioral disorders in children,” a South Korean study team conducted a nationwide population study to explore possible associations through the country’s single-payer health insurance database that covers roughly 97% of all residents.

The team looked at the cohort of all children born in Korea between 2008 and 2009, and followed them until December 31, 2017. They identified 93,717 children in this cohort who during surgery received general anesthesia with endotracheal intubation (a tube inserted down the trachea), and matched them with an equal number of children who were not exposed to general anesthesia.

The team matched the unexposed group with the exposed group by age, sex, birth weight, residential area at birth, and economic status.

They then assessed both groups for subsequent diagnoses of ADHD.

In general, children exposed to general anesthesia were found to have a 40% greater risk of subsequently being diagnosed with ADHD than their unexposed peers.

This effect was found to be dose dependent by several measures:

  • Duration of surgery: two-to-three-hour surgeries were associated with a 50% greater risk of subsequent ADHD, and surgeries of more than three hours with a 60% greater risk.
  • Number of exposures: two exposures were associated with a 54% increased risk, and three or more exposures with a 67% greater risk.
  • Placement in an Intensive Care Unit was associated with a 60% greater risk of ADHD.

All three measures were highly significant.

The authors concluded, “exposure to general anesthesia with ETI [endotracheal intubation] in children is associated with an increased risk of ADHD … We must recognize the possible neurodevelopmental risk resulting from general anesthesia exposure, inform patients and parents regarding this risk, and emphasize the importance of close monitoring of mental health. However, the risk from anesthesia exposure is not superior to the importance of medical procedures. Specific research is needed for the development of safer anesthetic drugs and doses.”

June 20, 2024

What the MAHA Report Gets Right—and Wrong—About ADHD and Children's Health

The U.S. government released a sweeping document titled The MAHA Report: Making Our Children Healthy Again, developed by the President’s “Make America Healthy Again” Commission. Chaired by public figures and physicians with ties to the current administration, the report presents a broad diagnosis of what it calls a national health crisis among children. It cites rising rates of obesity, diabetes, allergies, mental illness, neurodevelopmental disorders, and chronic disease as signs of a generation at risk.

The report's overarching goal is to shift U.S. health policy away from reactive, pharmaceutical-based care and toward prevention, resilience, and long-term well-being. It emphasizes reforming the food system, reducing environmental chemical exposure, addressing lifestyle factors like physical inactivity and screen overuse, and rethinking what it calls the “overmedicalization” of American children.

While some of the report’s arguments are steeped in political rhetoric and controversial claims—particularly around vaccines and mental health diagnoses—others are rooted in well-established public health science. This blog aims to highlight where the MAHA Report gets the science right, especially as it relates to childhood health and ADHD.

Some of the Good Ideas in the MAHA Report:

Although the MAHA Report contains several debatable assertions, it also outlines six key public health priorities that are well-supported by decades of research. If implemented thoughtfully, these recommendations might make a meaningful difference in the health of American children:

Reduce Ultra-Processed Food (UPF) Consumption

UPFs now make up nearly 70% of children’s daily calories. These foods are high in added sugars, refined starches, unhealthy fats, and chemical additives, but low in nutrients. Studies—including a 2019 NIH-controlled feeding study—show that UPFs promote weight gain, overeating, and metabolic dysfunction.  What can help: Tax incentives for fresh food retailers, improved school meals, front-of-pack labeling, and food industry regulation.

Promote Physical Activity and Limiting Sedentary Time

Most American children don’t get the recommended 60 minutes of physical activity per day. This contributes to obesity, cardiovascular risk, and even mental health issues. Physical activity is known to improve attention, mood, sleep, and self-regulation.   What can help: Mandatory daily PE, school recess policies, walkable community infrastructure, and screen-time education.

Addressing Sleep Deprivation

Teens today sleep less than they did a decade ago, in part due to screen use and early school start times. Sleep loss is linked to depression, suicide risk, poor academic performance, and metabolic problems.  What can help: Later school start times, family education about sleep hygiene, and limits on evening screen exposure.

Improving Maternal and Early Childhood Nutrition

The report indirectly supports actions that are backed by strong evidence: encouraging breastfeeding, supporting maternal whole-food diets, and improving infant nutrition. These are known to reduce chronic disease risk later in life.

What MAHA Says About ADHD:

ADHD is one of the most discussed neurodevelopmental disorders in the MAHA Report, but many of its claims about ADHD are misleading, oversimplified, or inconsistent with decades of scientific evidence, much of which is described in the International Consensus Statement on ADHDand other references given below.

✔️ Accurate: ADHD diagnoses are increasing.

This is true. Diagnosis rates have risen over the past two decades, due in part to better recognition, broadened diagnostic criteria, and changes in healthcare access.  Diagnosis rates in some parts of the country are too high, but we don’t know why.  That should be addressed and investigated.  MAHA attributes increasing diagnoses to ‘overmedicalization’.   That is a hypothesis worth testing but not a conclusion we can draw from available data.

❌ Misleading: ADHD is caused by processed food, screen time, or chemical exposures.

These have been associated with ADHD but have not been documented as causes. ADHD is highly heritable, with genetic factors accounting for 70–80% of the risk.   Unlike genetic studies, environmental risk studies are compromised by confounding variables.   There are good reasons to address these issues but doing so is unlikely to reduce diagnostic rates of ADHD. 

❌ Inaccurate: ADHD medications don’t work long-term.

The report criticizes stimulant use but fails to note that ADHD medications are among the most effective psychiatric treatments, especially when consistently used.  They cite the MTA study’s long term outcome study of kids assigned to medication vs. placebo as showing medications don’t work in the long term.  But that comparison is flawed because during the follow-up period, many kids on medication stopped taking them and many on placebo started taking medications.   Many studies document that medications for ADHD protect against many real-world outcomes such as accidental injuries, substance abuse and even premature death.

How the MAHA Report Could Still Help People with ADHD:

Despite the issues discussed above, the MAHA Report can indirectly help children and adults with ADHD by pushing for systemic changes that reduce ultra-processed food consumption, increase physical activity, and motivate better sleep practices.

In other words, you don’t need to reject the diagnosis of ADHD to support broader changes in how we feed, educate, and care for children. A more supportive, less toxic environment benefits everyone—including those with ADHD.

May 28, 2025

Meta-analysis of Transcranial Direct Current Stimulation Still Yields Little Sign of Efficacy

Background:

Despite recommendations for combined pharmacological and behavioral treatment in childhood ADHD, caregivers may avoid these options due to concerns about side effects or the stigma that still surrounds stimulant medications. Alternatives like psychosocial interventions and environmental changes are limited by questionable effectiveness for many patients. Increasingly, patients and caregivers are seeking other therapies, such as neuromodulation – particularly transcranial direct current stimulation (tDCS). 

tDCS seeks to enhance neurocognitive function by modulating cognitive control circuits with low-intensity scalp currents. There is also evidence that tDCS can induce neuroplasticity. However, results for ADHD symptom improvement in children and adolescents are inconsistent. 

The Method:

To examine the evidence more rigorously, a Taiwanese research team conducted a systematic search focusing exclusively on randomized controlled trials (RCTs) that tested tDCS in children and adolescents diagnosed with ADHD. They included only studies that used sham-tDCS as a control condition – an essential design feature that prevents participants from knowing whether they received the active treatment, thereby controlling for placebo effects. 

The Results:

Meta-analysis of five studies combining 141 participants found no improvement in ADHD symptoms for tDCS over sham-TDCS. That held true for both the right and left prefrontal cortex. There was no sign of publication bias, nor of variation (heterogeneity) in outcomes among the RCTs.  

Meta-analysis of six studies totaling 171 participants likewise found no improvement in inattention symptoms, hyperactivity symptoms, or impulsivity symptoms for tDCS over sham-TDCS. Again, this held true for both the right and left prefrontal cortex, and there was no sign of either publication bias or heterogeneity. 

Most of the RCTs also performed follow-ups roughly a month after treatment, on the theory that induced neuroplasticity could lead to later improvements. 

Meta-analysis of four RCTs combining 118 participants found no significant improvement in ADHD symptoms for tDCS over sham-TDCS at follow-up. This held true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

Meta-analysis of five studies totaling 148 participants likewise found no improvement in inattention symptoms or hyperactivity symptoms for tDCS over sham-TDCS at follow-up. AS before, this was true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

The only positive results came from meta-analysis of the same five studies, which reported a medium effect size improvement in impulsivity symptoms at follow-up. Closer examination showed no improvement from stimulation of the right prefrontal cortex, but a large effect size improvement from stimulation of the left prefrontal cortex

Interpretation: 

It is important to note that the one positive result was from three RCTs combining only 90 children and adolescents, a small sample size. Moreover, when only one of sixteen combinations yields a positive outcome, that begins to look like p-hacking for a positive result. 

In research, scientists use something called a “p-value” to determine if their findings are real or just due to chance. A p-value below 0.05 (or 5%) is considered “statistically significant,” meaning there's less than a 5% chance the result happened by pure luck. 

When testing twenty outcomes by this standard, one would expect one to test positive by chance even if there is no underlying association. In this case, one in 16 comes awfully close to that. 

To be sure, the research team straightforwardly reported all sixteen outcomes, but offered an arguably over-positive spin in their conclusion: “Our study only showed tDCS-associated impulsivity improvement in children/adolescents with ADHD during follow-ups and anode placement on the left PFC. ... our findings based on a limited number of available trials warrant further verification from large-scale clinical investigations.” 

October 24, 2025

Meta-analysis Suggests Motor Competence Deficits Associated with ADHD, But With Methodological Shortcomings

Children and adolescents with ADHD tend to be less active and more sedentary than their typically developing peers. This is concerning, since physical activity benefits mental, physical, and social development. For youth with ADHD, being active can improve symptoms like inattention, working memory, and inhibitory control. 

A major barrier to physical activity for children and adolescents with ADHD is limited motor competence. This stems from challenges in developing basic motor skills and more complex abilities needed for sports and advanced movements. 

Difficulties in developing fundamental movement skills – such as locomotor (running, jumping), object-control (throwing, catching), and stability skills (balancing, turning) – can reduce motor competence and limit physical activity. These basic movements are learned and refined with practice and age, not innate abilities. 

To date, research on the link between ADHD and motor competence has remained inconclusive. This systematic review and meta-analysis by a Spanish research team therefore aimed to determine whether children and adolescents with ADHD differ in motor competence from those with typical development (TD). 

Studies had to include children and adolescents diagnosed with ADHD. They had to involve a full motor assessment battery, not just one test, and present motor competence data for both ADHD and TD groups. 

The team excluded studies involving participants with other neurodevelopmental disorders or cognitive impairments, unless separate data for the ADHD subgroup were reported. 

Meta-analysis of six studies combining 323 children and adolescents found that typically developing individuals were twelve times more likely to score in the 5th percentile of the Movement Assessment Battery for Children as their peers diagnosed with ADHD. They were also three times more likely to score in the 15th percentile (five studies, 289 participants). Results were consistent across the studies (low heterogeneity). All included studies were randomized. 

Meta-analysis of five studies totaling 198 participants using the Test of Gross Motor Development reported significant deficits in both locomotor skills and object control skills among children and adolescents diagnosed with ADHD relative to their typically developing peers. In this case, however, results were inconsistent across studies (very high heterogeneity), and one of the studies was unrandomized. Because the team published only unstandardized mean differences, there was no indication of effect sizes. 

Meta-analysis of two studies encompassing 164 participants using the Bruininks-Oseretsky Test of Motor Proficiency similarly yielded significant deficits among children and adolescents diagnosed with ADHD relative to their typically developing peers, but in this case with low heterogeneity. Notably, one of the two studies was not randomized. 

Moreover, the team made no assessment of publication bias. 

The team concluded, “The findings of this review indicate that children and adolescents with ADHD show significantly lower levels of motor competence compared to their TD peers. This trend was evident across a range of validated assessment tools, including the MABC, BOT, TGMD, and other standardized test batteries. Future research should aim to reduce methodological heterogeneity and further investigate the influence of factors such as ADHD subtypes and comorbid conditions on motor development trajectories.” 

However, without a publication bias assessment, reliance on unrandomized studies in two of the tests, no indication of effect size in the same two tests, and small sample sizes, these results are at best suggestive, and will require further research to confirm. 

October 21, 2025

A Lesson in Cautious Interpretation: Meta-analysis Suggests Neurofeedback Improves ADHD Symptoms

Executive function impairment is a key feature of ADHD, with its severity linked to the intensity of ADHD symptoms. Executive function involves managing complex cognitive tasks for organized behavior and includes three main areas: inhibitory control (suppressing impulsive actions), working memory (holding information briefly), and cognitive flexibility (switching between different mental tasks). Improving executive functions is a critical objective in the treatment of ADHD. 

Amphetamines and methylphenidate are commonly used to treat ADHD, but can cause side effects like reduced appetite, sleep problems, nausea, and headaches. Long-term use may also lead to stunted growth and cardiovascular issues. This encourages the search for non-invasive methods to enhance executive function in children with ADHD. 

Neurological techniques like neurofeedback and transcranial stimulation are increasingly used to treat children with neurodevelopmental disorders. Neurofeedback is the most adopted method; it is noninvasive and aims to improve brain function by providing real-time feedback on brainwave activity so participants can self-regulate targeted brain regions. 

The systematic search and meta-analysis examined children and adolescents aged 6–18 with ADHD. It included randomized and non-randomized controlled trials, as well as quasi-experimental studies that reported statistical data such as participant numbers, means, and standard deviations. Studies were required to use validated measures of executive function, including neurocognitive tasks or questionnaires. They also had to have control groups. 

A meta-analysis of ten studies (539 participants) found a small-to-medium improvement in inhibitory control after neurofeedback training, with no publication bias and minimal study heterogeneity*. Long-term treatment (over 21 hours) showed benefits, while short-term treatment did not. However, publication bias was present in the long-term treatment studies and was not addressed. 

A meta-analysis of seven studies with 370 children and adolescents found a small-to-medium improvement in working memory after neurofeedback, with no publication bias overall but high heterogeneity. A dose-response effect was observed: treatments over 21 hours showed benefits, while shorter ones did not. However, publication bias was present in the long-term treatment studies and was not addressed. 

The study team also looked at sustained effects six months to a year after conclusion of training. Meta-analysis of two studies totaling 131 participants found a sustained small-to-medium improvement in inhibitory control, with negligible heterogeneity. Meta-analysis of three studies combining 182 participants found a sustained medium improvement in working memory, with moderate heterogeneity and no sign of publication bias. 

The team concluded, “NFT is an effective intervention for improving executive function in children with ADHD, specifically inhibitory control and working memory. This approach demonstrates a more pronounced impact on working memory when extended beyond 1000 min [sic], with inhibitory control following closely behind. Furthermore, the evidence suggests that NFT may have sustained effects on both working memory and inhibitory control. Given the relatively small number of studies assessing long-term effects and the potential for publication bias, further research is necessary to confirm these effects.” 

Moreover, because 1) RCTs are the gold standard, and the meta-analyses combined RCTs with non-RCTs, and 2) data from neurocognitive tasks was combined with data from more subjective and less accurate questionnaires, these meta-analysis results should be interpreted with further caution. 

*Heterogeneity refers to the rate of variation between individual study outcomes. High heterogeneity means that there was substantial variation in the results. When a meta-anaylysis has high heterogeneity, it suggests that the studies differ significantly in their populations, methods, interventions, or outcomes, making the combined result much less reliable.

October 17, 2025