October 23, 2023

Safety and efficacy of long-term use of guanfacine for adults with ADHD

Guanfacine extended-release(GXR) is a non-stimulant α2A-adrenergic receptor agonist, approved worldwide for ADHD in children and adolescents.

A Japanese research team set out to explore the long-term administration of once-daily GXR in adults with ADHD over a year of treatment. Their primary objective was to evaluate the safety, and the secondary objective was to evaluate efficacy.

This was an open-label trial. Open-label trials are the opposite of double-blind trials. In a double-blind trial, neither the researchers nor the participants know what treatment they participants are receiving. In an open-label trial, on the other hand, both the researchers and participants know what treatment the participant is receiving, which can introduce significant bias. These studies are therefore at the lowest rung in the evidentiary base.

It is worth noting, however, that the risk of bias would be primarily for efficacy, and the primary aim of the trial was to evaluate safety.

The trial was funded by the manufacturer, but preregistered, a way of assuring that results would be released regardless of the outcome.

The study population consisted of 191 ADHD patients 18 and older at 71 locations in Japan. There was no control population. The 50-week flexible titrated dosing treatment period was followed by a 2-week period over which doses were gradually reduced, and then a one-week follow-up period. That means the trial covered an entire year. Of the enrolled patients, 67 dropped out, mostly due to adverse events, leaving 124 patients after the trial.

A total of 830 treatment-emergent adverse events (TEAEs) were reported by 180 patients. One in five patients (34)discontinued treatment due to adverse events. The most commonly reported adverse events were somnolence, thirst, nasopharyngitis, decreased blood pressure, postural dizziness, bradycardia (abnormally slow heartbeat), malaise, constipation, and dizziness. Except for nasopharyngitis, all were considered related to the medication. There were two serious adverse events, one unrelated to the medication, the other a supraventricular tachycardia (abnormally fast heart rhythm arising from improper electrical activity in the upper part of the heart) in a patient simultaneously medicated for a preexisting condition. The patient recovered after treatment and discontinuation of GXR.

The main TEAEs resulting in Discontinuation were somnolence (nine patients), blood pressure reduction (eight patients), malaise (six patients), and bradycardia (four patients, with only one case considered severe), and postural dizziness (three patients) or dizziness(three patients).

Significant reductions in ADHD scores and improvements in executive functioning were measured across the study population following a year's GXR treatment. Again, this was not the primary aim of the trial, and double-blinded randomized controlled trials are the gold standard.

The authors concluded that "there were no new or unexpected safety concerns" and "patients who received dose-optimized GXR had improvements in multiple aspects of ADHD, including symptoms, QoL [Quality of Life], and executive functioning," but acknowledged, "There was a potential for observer bias because of the open-label nature of the study, and the findings may not be representative of real-world settings because patients with psychiatric or cardiovascular comorbidities, which are common in patients with ADHD, were excluded. In addition, there was a potential bias favoring safety and efficacy for continuing patients because those who discontinued owing to adverse events or lack of efficacy were not eligible for inclusion."

Akira Iwanami, Kazuhiko Saito, Masakazu Fujiwara, Daiki Okutsu, and Hironobu Ichikawa, "Safety and efficacy of guanfacine extended-release in adults with attention-deficit/hyperactivity disorder: an open-label, long-term, phase 3 extension study," BMC Psychiatry(2020), https://doi.org/10.1186/s12888-020-02867-8.

Related posts

No items found.

Meta-analysis Finds Little Evidence in Support of Game-based Digital Interventions for ADHD

ADHD treatment usually involves a combination of medication and behavioral therapy. However, medication can cause side effects, adherence problems, and resistance from patients or caregivers. 

Numerous systematic reviews and meta-analyses have evaluated the effects of non-pharmacological interventions on ADHD. With little research specifically examining game-based interventions for children and adolescents with ADHD or conducting meta-analyses to quantify their treatment effectiveness, a Korean study team performed a systematic search of the peer-reviewed medical literature to do just that.  

The Study: 

To be included, studies had to be randomized controlled trials (RCTs) that involved children and adolescents diagnosed with ADHD. The team excluded RCTs that included participants with psychiatric conditions other than ADHD.  

Eight studies met these standards. Four had a high risk of bias.  

Meta-analysis of four RCTs with a combined total of 481 participants reported no significant improvements in either working memory or inhibition from game-based digital interventions relative to controls. 

Likewise, meta-analysis of three RCTs encompassing 160 children and adolescents found no significant improvement in shifting tasks relative to controls. 

And meta-analysis of two RCTs combining 131 participants reported no significant gains in initiating, planning, organizing, and monitoring abilities, nor in emotional control

The only positive results were from two RCTs with only 90 total participants that indicated some improvement in visuospatial short-term memory and visuospatial working memory.  

There was no indication of effect size, because the team used mean differences instead of standardized mean differences.  

Conclusion:

The team concluded, “The meta-analysis revealed that game-based interventions significantly improved cognitive functions: (a) visuospatial short-term memory … and (b) visuospatial working memory … However, effects on behavioral aspects such as inhibition and monitoring … were not statistically significant, suggesting limited behavioral improvement following the interventions.” 

Simply put, the current evidence does not support the effectiveness of game-based interventions in improving behavioral symptoms of ADHD in children and adolescents. The only positive results were from two studies with a small combined sample size, which does not qualify as a genuine meta-analysis. All the other meta-analyses performed with larger sample sizes reported no benefits. 

Understanding Teen Health and Well-being in ADHD: A Fresh Perspective from the CDC

Recent research from the Centers for Disease Control and Prevention (CDC) highlights distinct health and social-emotional challenges faced by teens diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD). This study, published in the Journal of Developmental and Behavioral Pediatrics, offers critical insights directly from the teens themselves, providing a unique view often missed when relying solely on parent or clinical reports. 

Researchers analyzed nationally representative data from July 2021 through December 2022, comparing self-reported experiences of teens aged 12 to 17 with and without ADHD. Approximately 10% of teenagers had an ADHD diagnosis, and the findings reveal specific areas where teens with ADHD face notable difficulties. 

Teenagers with ADHD reported significantly higher rates of bullying victimization and struggles in making friends compared to their peers. Surprisingly, they were less likely to report a lack of peer support, suggesting complexities in how they perceive friendships and social networks. The study underscores the importance of directly engaging teens in assessing their social relationships, rather than solely relying on parental perspectives. 

Sleep difficulties emerged as another critical issue for teens with ADHD. About 80% reported problems like difficulty waking up and irregular wake times, markedly higher than their non-ADHD counterparts. Such disruptions can exacerbate attention difficulties and emotional regulation issues, further complicating daily life for these teens. 

Excessive screen time also stood out, with nearly two-thirds of teens with ADHD spending over four hours daily on screens, excluding schoolwork. This high screen usage is concerning, given its potential negative impact on physical and mental health, including sleep quality and social interactions. 

Notably, the study found no significant differences in physical activity levels or concerns about weight between teens with and without ADHD. This finding contrasts with previous studies that have highlighted lower physical activity among children with ADHD, suggesting the need for continued research on how physical activity is measured and encouraged in this population. 

The study’s authors emphasize the importance of health promotion interventions tailored specifically for teens with ADHD. By directly engaging teens and considering their unique perspectives, interventions can better address social-emotional well-being and healthy lifestyle behaviors, ultimately improving long-term outcomes for this vulnerable group. 

Overall, this research provides compelling evidence for healthcare providers, educators, and families to focus on supporting teens with ADHD in areas of social skills, sleep hygiene, and healthy screen time habits. Such targeted support can significantly enhance the quality of life and health outcomes for adolescents navigating the challenges of ADHD. 

Meta-analysis Reports No Significant Evidence for Efficacy of Neuromechanistic Treatments for Adult ADHD

The Background on ADHD Treatments, rTMS and tDCS:

Methylphenidate is known as the gold-standard treatment for ADHD, increasing dopamine concentrations and helping to focus. However, these psychostimulants may be less well-tolerated in adults. Adverse effects include decreased appetite, nausea, racing heartbeat, restlessness, nervousness, and insomnia. 

Neurofeedback is a non-pharmaceutical treatment that combines cognitive behavioral therapy techniques like conditioning and positive reinforcement with electroencephalography (EEG) feedback. Electrodes are placed on specific brain areas, guiding patients to regulate their brainwave activity. 

Repetitive transcranial magnetic stimulation (rTMS) uses electromagnetism to induce an electric field by passing a magnetic field through the scalp. Transcranial direct current stimulation (tDCS), on the other hand, directly applies an electric current through the scalp. Both repetitive transcranial magnetic stimulation (rTMS) and tDCS primarily target the outermost layers of neurons, as they are non-invasive methods. Nevertheless, both techniques are believed to affect deeper layers through interconnected neuronal networks.  

The Study:

A French research team conducted a systematic search of the peer-reviewed medical literature to perform a meta-analysis to explore the efficacy of these experimental treatment techniques. 

Eight studies – four using rTMS and another four using tDCS – met the inclusion criteria. Studies had to be randomized controlled trials (RCTs), and had to involve multiple sessions of treatment. Participants had to be adults previously diagnosed with ADHD.  

Outcomes were measured through self-rated scales, neuropsychological tests, and electrophysiological pre-post evaluations. 

Separate meta-analyses of the four tDCS RCTs combining 154 participants and of the four rTMS RCTs encompassing 149 participants likewise reported no significant improvements. In all cases variation in outcomes between studies was moderate, and there were no signs of publication bias. 

The Conclusion on Neuromechanistic Treatments for ADHD:

Meta-analysis of all eight studies with a combined total of 421 participants reported no significant improvements over controls. Narrowing down to studies that used sham controls likewise produced no significant improvements. So, despite the title of this study, these neuromechanistic treatments do not appear to be the future of treatment for adult ADHD.