Meta-analysis Reports ADHD More Than Triples Odds of Suicidal Behavior in Youth

According to the World Health Organization, suicide is the second leading cause of death among individuals aged 15 to 29 years. 

A European study team recently released findings of the first meta-analysis to explore the association between clinically diagnosed ADHD in children and adolescents and subsequent suicidality.  

The criteria for study inclusion were: 

  • Most participants had to be under 18 at baseline. 
  • Longitudinal design, meaning that participants were followed over time. 
  • Having an ADHD sample diagnosed in childhood that was followed up for suicidal behavior. 
  • Having a control group without ADHD that was followed up for suicidal behavior. 
  • That ADHD was clinically diagnosed based on DSM-5 criteria. 
  • The total number of participants and of those with suicidal behavior in both the ADHD group and the control group during follow-up were reported. 

All selected studies scored at least eight out of 11 points after quality assessment. The most frequent defect was that it was unclear whether suicidal behavior had occurred before study initiation. 

Meta-analysis of all nine included studies, encompassing more than 4.4 million participants, reported more than threefold greater odds of overall suicidal behavior among children and adolescents previously diagnosed with ADHD, as opposed to children and adolescents not previously diagnosed with ADHD. Study outcomes varied significantly (high heterogeneity) but showed no publication bias. 

Breaking this down into subcategories of risk: 

  • Two studies combining 521 participants reported roughly fourfold greater odds of suicidal ideation among those previously diagnosed with ADHD, with negligible heterogeneity. 
  • Six studies encompassing a total of more than 87,000 children and adolescents reported more than threefold greater odds of suicide attempt among those previously diagnosed with ADHD, with high heterogeneity. 
  • Two studies combining more than 2.6 million participants reported a near-quadrupling of the odds of suicide death among those previously diagnosed with ADHD, with negligible heterogeneity. 

The team concluded, “the current systematic review and meta-analysis has confirmed previous findings that there is an elevated risk for suicidal behavior in ADHD patients.” They also note, however, that “this relationship is heterogeneous and complex, with significant differences across ADHD subtypes, age groups, sexes, comorbidities, and social issues, all of which play important roles in the development of suicidal behavior.”

Peter Garas, Zsofia K. Takacs, and Judit Balázs, “Longitudinal Suicide Risk in Children and Adolescents With Attention Deficit and Hyperactivity Disorder: A Systematic Review and Meta-Analysis,” Brain and Behavior (2025), 15: e70618, https://doi.org/10.1002/brb3.70618.

Related posts

ADHD and the Risk for Suicide

ADHD and the Risk for Suicide

Suicide is one of the most feared outcomes of any psychiatric condition. Although its association with depression is well known, a small but growing research literature shows that ADHD is also a risk factor for suicidality.  Suicide is difficult to study. Because it is relatively rare, large samples of patients are needed to make definitive statements.
Studies of suicide and ADHD must also consider the possibility that medications might elevate that risk. For example, the FDA placed a black box warning on atomoxetine because that ADHD medication had been shown to increase suicidal risk in youth.  A recent study of 37,936 patients with ADHD now provides much insight into these issues (Chen, Q., Sjolander, A., Runeson, B., D'Onofrio, B. M., Lichtenstein, P. & Larsson, H. (2014). Drug treatment for attention-deficit/hyperactivity disorder and suicidal behavior: a register-based study. BMJ 348, g3769.). In Sweden, such large studies are possible because researchers have computerized medical registers that describe the disorders and treatments of all people in Sweden. Among 37,936 patients with ADHD, 7019 suicide attempts or completed suicides occurred during 150,721 person-years of follow-up. This indicates that, in any given year, the risk for a suicidal event is about 5%. For ADHD patients, the risk for a suicide event is about 30% greater than for non-ADHD patients. Among the ADHD patients who attempted or completed suicide, the risk was increased for those who had also been diagnosed with a mood disorder, conduct disorder, substance abuse, or borderline personality. This is not surprising; the most serious and complicated cases of ADHD are those that have the greatest risk for suicidal events. The effects of the medication were less clear.  The risk for suicide events was greater for ADHD patients who had been treated with non-stimulant medication compared with those who had not been treated with non-stimulant medication. A similar comparison showed no effect of stimulant medications. This first analysis suffers from the fact that the probability of receiving medication increases with the severity of the disorder. To address this problem, the researchers limited the analyses to ADHD patients who had some medication treatment and then compared suicidal risk between periods of medication treatment and periods of no medication treatment. This analysis found no increased risk for suicide from non-stimulant medications and, more importantly, found that for patients treated with stimulants, the risk for suicide was lower when they were taking stimulant medications. This protective effect of stimulant medication provides further evidence of the long-term effects of stimulant medications, which have also been shown to lower the risks for traffic accidents, criminality, smoking, and other substance use disorders.

March 28, 2021

Swedish nationwide population study finds mothers with ADHD have elevated risk of depression and anxiety disorders after childbirth

Swedish nationwide population study finds mothers with ADHD have elevated risk of depression and anxiety disorders after childbirth

In the general population, most mothers experience mood disturbances right after childbirth, commonly known as postpartum blues, baby blues, or maternity blues. Yet only about one in six develop symptoms with a duration and magnitude that require treatment for depressive disorder, and one in ten for anxiety disorder.

To what extent does ADHD contribute to the risk of such disorders following childbirth? A Swedish study team used the country’s single-payer health insurance database and other national registers to conduct the first nationwide population study to explore this question.

They used the medical birth register to identify all 420,513 women above 15 years of age who gave birth to their first child, and all 352,534 who gave birth to their second child, between 2005 and 2013. They excluded miscarriages. They then looked for diagnoses of depression and/or anxiety disorders up to a year following childbirth.

In the study population, 3,515 mothers had been diagnosed with ADHD, and the other 769,532 had no such diagnosis. 

Following childbirth, depression disorders were five times more prevalent among mothers with ADHD than among their non-ADHD peers. Excluding individuals with a prior history of depression made little difference, lowering the prevalence ratio to just under 5. Among women under 25, the prevalence ratio was still above 3, while for those 25 and older it was above 6.

Similarly, anxiety disorders were over five times more prevalent among mothers with ADHD than among their non-ADHD peers. Once again, excluding individuals with a prior history of depression made little difference, lowering the prevalence ratio to just under 5. Among women under 25, the prevalence ratio was still above 3, while for those 25 and older it was above 6.

The team cautioned, “There is a potential risk of surveillance bias as women diagnosed with ADHD are more likely to have repeated visits to psychiatric care and might have an enhanced likelihood of also being diagnosed with depression and anxiety disorders postpartum, compared to women without ADHD.”

Nevertheless, they concluded, “ADHD is an important risk factor for both depression and anxiety disorders in the postpartum period and should be considered in the post- pregnancy maternal care, regardless of sociodemographic factors and the presence of other psychiatric disorders. Parental education prior to conception, psychological surveillance during, and social support after childbirth should be provided to women diagnosed with ADHD.”

December 22, 2023

Nationwide population study in Denmark finds children and adolescents with ADHD more than twice as likely to suffer criminal violence

Denmark Population Study Finds Children and Adolescents with ADHD More than Likely to Suffer Criminal Violence

Children with disabilities are known to be at heightened risk of violence compared to their non-disabled peers. To what extent does this hold true for ADHD?

Denmark has a single-payer health insurance system through which health data about virtually the entire population can be cross-referenced with population, crime, welfare, and other registers through unique individual person numbers.

A Danish study team accessed national registers to examine the relationship between ADHD and criminal victimhood among nine yearly birth cohorts totaling more than 570,000 children and adolescents. 

Of these, 557,521, among them 12,040 with ADHD, were not reported as being exposed to violence, and 12,830, among which 1,179 with ADHD, were exposed to violence.

From the raw data, children and adolescents with ADHD were more than four times as likely to be exposed to violence than their typically developing peers.

The team then adjusted for other disabilities, family risk factors, gender, birth year, and ethnic background.

With these confounders out of the way, children and adolescents with ADHD remained more than twice as likely to be exposed to violence than their typically developing peers.

To place this outcome in further perspective:

  • Brain injuries increased the odds of being exposed to violence by over 75% relative to typically developing peers.
  • Physical and speech disabilities raised the odds by a bit over 35%.
  • Intellectual and sensory disabilities, dyslexia, and congenital malformations had no effect. 
  • Epilepsy reduced the odds of being exposed to violence by just under 20%, and autistic spectrum disorder by just over 25%.

Certain family risk factors further aggravated the odds:

  • Violence in the family by more than 2.5-fold.
  • Out-of-home care and breakup of parental relationship by more than 75%.

Perhaps surprisingly, substance abuse by family members had no effect whatsoever after adjusting for confounders.

January 24, 2024

Rethinking First-Line ADHD Medication: Are Non-Stimulants Being Undervalued?

Stimulant medications have long been considered the default first-line treatment for attention-deficit/hyperactivity disorder (ADHD). Clinical guidelines, prescribing practices, and public narratives all reinforce the idea that stimulants should be tried first, with non-stimulants reserved for cases where stimulants fail or are poorly tolerated.

I recently partnered with leading ADHD researcher Jeffrey Newcorn for a Nature Mental Health commentary on the subject. We argue that this hierarchy deserves reexamination. It is important to note that our position is not anti-stimulant. Rather, we call into question whether the evidence truly supports treating non-stimulants as secondary options, and we propose that both classes should be considered equal first-line treatments.

What the Evidence Really Shows

Stimulants have earned their reputation as the go-to drug of choice for ADHD. They are among the most effective medications in psychiatry, reliably reducing core ADHD symptoms and improving daily functioning when properly titrated and monitored. However, when stimulant and non-stimulant medications are compared more closely, the gap between them appears smaller than commonly assumed.

Meta-analyses often report slightly higher average response rates for stimulants, but head-to-head trials where patients are directly randomized to one medication versus another frequently find no statistically significant differences in symptom improvement or tolerability. Network meta-analyses similarly show that while some stimulant formulations have modest advantages, these differences are small and inconsistent, particularly in adults.

When translated into clinical terms, the advantage of stimulants becomes even more modest. Based on existing data, approximately eight patients would need to be treated with a stimulant rather than a non-stimulant for one additional person to experience a meaningful benefit. This corresponds to only a 56% probability that a given patient will respond better to a stimulant than to a non-stimulant. This difference is not what we would refer to as “clinically significant.” 

How The Numbers Can Be Misleading

One reason non-stimulants may appear less effective is the way efficacy is typically reported. Most comparisons rely on standardized mean differences, a method of averages that may mask heterogeneity of treatment effects. In reality, ADHD medications do not work uniformly across patients.

For example, evidence suggests that response to some non-stimulants, such as atomoxetine, is bimodal: this means that many patients respond extremely well, while others respond poorly, with few in between. When this happens, average effect sizes can obscure the fact that a substantial subgroup benefits just as much as they would from a stimulant. In other words, non-stimulants are not necessarily less effective across the board, but that they are simply different in who they help.

Limitations of Clinical Trials

In our commentary, we also highlight structural issues in ADHD research. Stimulant trials are particularly vulnerable to unblinding, as their immediate and observable physiological effects can reveal treatment assignment, potentially inflating perceived efficacy. Non-stimulants, with slower onset and subtler effects, are less prone to this bias.

Additionally, many randomized trials exclude patients with common psychiatric comorbidities such as anxiety, depression, or substance-use disorders. Using co-diagnoses as exclusion criteria for clinical trials on ADHD medications is nonviable when considering the large number of ADHD patients who also have other diagnoses. Real-world data suggest that a large proportion of individuals with ADHD would not qualify for typical trials, limiting how well results generalize to everyday clinical practice.

Considering the Broader Impact

Standard evaluations of medication tolerability focus on side effects experienced by patients, but this narrow lens misses broader societal consequences. Stimulants are Schedule II controlled substances, which introduces logistical barriers, regulatory burdens, supply vulnerabilities, and administrative strain for both patients and clinicians.

When used as directed, stimulant medications do not increase risk of substance-use disorders (and, in fact, tend to reduce these rates); however, as ADHD awareness has spread and stimulants are more widely prescribed, non-medical use of prescription stimulants has become more widespread, particularly among adolescents and young adults. Non-stimulants do not carry these risks.

Toward Parallel First-Line Options

Non-stimulants are not without drawbacks themselves, however. They typically take longer to work and have higher non-response rates, making them less suitable in situations where rapid results are essential. These limitations, however, do not justify relegating them to second-line status across the board.

This is a call for abandoning a one-size-fits-all approach. Instead, future guidelines should present stimulant and non-stimulant medications as equally valid starting points, clearly outlining trade-offs related to onset, efficacy, misuse risk, and practical burden.

The evidence already supports this shift. The remaining challenge is aligning clinical practice and policy with what the data, and patient-centered care, are increasingly telling us.

January 8, 2026

Patient-Centered Outcomes Research Institute (PCORI) to Fund Landmark ADHD Medication Study

Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.

This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the  “stimulant-first” approach, which is currently used by most prescribers.

From this study, we hope to learn:

  • Is starting with a non-stimulant medication “good enough” compared with starting with a stimulant?
    In other words, when we look at overall improvement in a child’s daily life, not just ADHD symptoms, does a non-stimulant-first approach perform similarly to a stimulant-first approach?
  • Which children do better with which approach?
    Children with ADHD are very different from one another. Some have anxiety, depression, learning problems, or autism spectrum conditions. We want to know whether certain groups of children benefit more from starting with stimulants, and others from starting with non-stimulants.
  • How do the two strategies compare for side effects, treatment satisfaction, and staying on medication?
    We will compare how often children stop or switch medications because of side effects or lack of benefit, and how satisfied children, parents, and clinicians are with care under each strategy.
  • What are the longer-term outcomes over a year?
    We are interested not only in short-term symptom relief, but also in how children are doing months later in school, at home, with friends, and emotionally.

Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”

Who will be in the study?

We will enroll about 1,000 children and adolescents, ages 6 to 16, who:

  • Have ADHD and are starting or restarting medication treatment, and
  • Are being treated in everyday pediatric and mental health clinics at large children’s hospitals and health systems across the United States.

We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.

How will the treatments be assigned?

This is a randomized comparative effectiveness trial, which means:

  • Each child will be randomly assigned (like flipping a coin) to one of two strategies:


    1. Stimulant-first strategy – the clinician starts treatment with a stimulant medication.
    2. Non-stimulant-first strategy – the clinician starts treatment with a non-stimulant medication.
  • Within the assigned class, the clinician and family still choose the specific medicine and dose, and can adjust treatment as they normally would. This keeps the study as close as possible to real-world practice.
  • The randomization is 1:1, so about half the participants will start with stimulants and half with non-stimulants.

Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.

What will participants be asked to do?

Each family will be followed for 12 months. We will collect information at:

  • Baseline (before or just as medication is started)
  • Early follow-up (about weeks 3 and 6)
  • Later follow-up (about 3 months, 6 months, and 12 months)

At these times:

  • Parents will complete questionnaires about ADHD symptoms, behavior, emotions, and daily functioning at home and in the community.
  • Teachers will complete brief forms about the child’s behavior and performance at school.
  • Children and teens (when old enough) will complete age-appropriate questionnaires about their own mood, behavior, and quality of life.
  • A specially trained clinical rater, using all available information but blinded to treatment strategy, will give a global rating of how much the child has improved overall, not just in ADHD symptoms.

We will also track:

  • Medication changes (stopping, switching, or adding medicines)
  • Reasons for any changes (side effects, lack of benefit, or other reasons)
  • Any serious side effects or safety concerns

Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.

How will we analyze the results?

Using standard statistical methods, we will:

  • Compare the overall improvement of children in the stimulant-first group versus the non-stimulant-first group after 12 months.
  • Look at differences in side effects, discontinuation rates, and treatment satisfaction between the two strategies.
  • Examine which child characteristics (such as age, sex, co-occurring conditions, and baseline severity) are linked to better results with one strategy versus the other.
  • Analyze long-term outcomes, including functioning at home, school, and with peers, and emotional well-being.

All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?

Why is this study necessary now?

This study addresses a critical, timely gap in ADHD care:

  • Guidelines are ahead of the evidence.
    Existing guidelines almost always recommend stimulants as the first-line medication, yet careful reviews of the evidence show that direct comparisons of stimulant-first versus non-stimulant-first strategies are limited. We do not have strong data to say that starting with stimulants is clearly superior for all children.
  • Real-world children are more complex than those in past trials.
    Most prior medication trials have excluded children with multiple conditions, serious family stressors, or other complexities that are very common in everyday practice. Our pragmatic, multi-site design will include these children and thus produce findings that are directly relevant to front-line clinicians and families.
  • Families and clinicians are asking for alternatives.
    Parents often express worries about stimulant side effects, long-term use, and stigma. Clinicians would like clearer guidance about when a non-stimulant is a reasonable first choice. At the same time, stimulant shortages and concerns about misuse and diversion have exposed the risks of relying almost entirely on one class of medications.
  • The timing is right to influence practice and policy.
    Our team includes parents, youth advocates, frontline clinicians, and national networks that link major children’s hospitals. These partners have helped shape the study from the beginning and will help interpret and share the results. This means that if starting with non-stimulants is found to be similarly effective and safer or more acceptable for some children, practice patterns and guidelines can change rapidly.

In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.

This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY).   It will be conducted at nine sites across the USA.

January 2, 2026

Evidence-Based Interventions for ADHD

EBI-ADHD: 

If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other.  The EBI-ADHD website fixes that. 

EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database  The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions.  These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options. 

The heart of the site is an interactive dashboard.  You can: 

  1. Choose an age group: children (6–17), adolescents (13–17), or adults (18+). 
  1. Choose a time frame: results at 12, 26, or 52 weeks. 
  1. Choose whether to explore by intervention (e.g., methylphenidate, CBT, mindfulness, diet, neurofeedback) or by outcome (e.g., ADHD symptoms, functioning, adverse events), depending on what’s available. EBI-ADHD Database 

The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance: 

  1. How big the effect is, compared to placebo or another control (large benefit, small benefit, no effect, small negative impact, large negative impact). 
  1. How confident we can be in that result (high, moderate, low, or very low certainty).  

Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided. 

EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system. 

The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.  

Why it Matters 

ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it. 

In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.”