June 4, 2024

Understanding the Role of Disinhibition in ADHD and the Impact of Physical Activity

ADHD often includes a problem called disinhibition. This means that the brain struggles to control attention, thoughts, emotions, and behavior, which can lead to negative outcomes. Normally, inhibition helps people stay focused and avoid distractions, but when it fails, it's called disinhibition.

Children with ADHD who have problems with inhibition may face issues like substance abuse, self-harm, and antisocial behavior. Improving their inhibition can help them better manage themselves, do well in school, and have better relationships.

A team of researchers from China and South Korea explored whether physical activity could improve inhibition in children with ADHD. They reviewed studies and excluded those without control groups, those with poor quality assessments, and those involving other interventions like cognitive training or supplements. Their final analysis included 11 studies with 713 participants.

Key Findings on Physical Activity

  1. Frequency and Duration: Physical activity had to be done at least twice a week to show significant improvement in inhibition. Sessions needed to last between 45 minutes to an hour for noticeable benefits, with sessions over an hour showing even greater improvements.
  2. Consistency: Regular, long-term physical activity was more effective than single sessions.
  3. Intensity: Moderate-to-vigorous activities were better than moderate activities alone.
  4. Type of Activity:some text
    • Open-skilled sports (like ping-pong or taekwondo) which involve reacting to changing environments, showed the most significant improvements.
    • Closed-skill sports (like running or swimming) showed smaller improvements.
    • Exergaming (exercise using video games) had moderate benefits.
  5. Specific Improvements:some text
    • Improvements in response inhibition (the ability to control impulsive responses) were small to medium.
    • Improvements in interference suppression (preventing distractions from affecting working memory) were large.

Conclusion

The research concluded that physical activity can significantly improve the inhibition in children with ADHD, especially with regular, moderate-to-vigorous, open-skilled exercise done at least twice a week for an hour or more. Future studies should continue to explore this with high-quality methods to confirm these findings.

Meng Wang, Xinyue Yang, Jing Yu, Jian Zhu, Hyun-Duck Kim, and Angelita Cruz, “Effects of Physical Activity on Inhibitory Function in Children with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis,” International Journal of Environmental Research and Public Health (2023) 20, 1032, https://doi.org/10.3390/ijerph20021032.

Related posts

Immediate and Long-term Effects of Exercise on ADHD Symptoms and Cognition

Immediate and Longer-term Effects of Exercise on ADHD Symptoms and Cognition

A team of Spanish researchers has published a systematic review of 16 studies with a total of 728 participants exploring the effects of physical exercise on children and adolescents with ADHD. Fourteen studies were judged to be of high quality, and two of medium quality.

Seven studies looked at the acute effects of exercise on eight to twelve-year-old youths with ADHD. Acute means that the effects were measured immediately after periods of exercise lasting up to 30 minutes. Five studies used treadmills and two used stationary bicycles, for periods of five to 30 minutes. Three studies "showed a significant increase in the speed of reaction and precision of response after an intervention of 20-30 min, but at moderate intensity (50-75%)." Another study, however, found no improvement in mathematical problem-solving after 25 minutes using a stationary bicycle at low (40-50%) or moderate intensity (65-75%). The three others found improvements in executive functioning, planning, and organization in children after 20- to 30-minute exercise sessions.

Nine studies examined longer-term effects, following regular exercise over many weeks. One reported that twenty consecutive weekly yoga sessions improved attention. Another found that moderate to vigorous physical activity (MVPA) led to improved behavior beginning in the third week, and improved motor, emotional and attentional control, by the end of five weeks. A third study reported that eight weeks of starting the school day with 30 minutes of physical activity led to improvement in Connor's ADHD scores, oppositional scores, and response inhibition. Another study found that twelve weeks of aerobic activity led to declines in bad mood and inattention. Yet another reported that thrice-weekly 45-minute sessions of MVPA over ten weeks improved not only muscle strength and motor skills, but also attention, response inhibition, and information processing.

Two seventy-minute table tennis per week over twelve weeks improved executive functioning and planning, in addition to locomotor and object control skills.

Two studies found a significant increase in brain activity. One involved two hour-long sessions of rowing per week for eight weeks, the other three 90-minute land-based sessions per week for six weeks. Both studies measured higher activation of the right frontal and right temporal lobes in children, and lower theta/alpha ratios in male adolescents.

All 16 studies found positive effects on cognition. Five of the nine longer-term studies found positive effects on behavior. No study found any negative effects. The authors of the review concluded that physical activity "improves executive functions, increases attention, contributes to greater planning capacity and processing speed and working memory, improves the behavior of students with ADHD in the learning context, and consequently improves academic performance." Although the data are limited by a lack of appropriate controls, they suggest that, in addition to the well-known positive effects of physical activity, one may expect to see improvements in ADHD symptoms and associated features, especially for periods of sustained exercise.

July 18, 2021

How Effective Is Exercise in Treating ADHD?

New meta-analysis explores effectiveness of physical exercise as treatment for ADHD

Noting that "Growing evidence shows that moderate physical activity (PA) can improve psychological health through enhancement of neurotransmitter systems," and "PA may play a physiological role similar to stimulant medications by increasing dopamine and norepinephrine neurotransmitters, thereby alleviating the symptoms of ADHD," a Chinese team of researchers performed a comprehensive search of the peer-reviewed journal literature for studies exploring the effects of physical activity on ADHD symptoms.

They found nine before-after studies with a total of 232 participants, and fourteen two-group control studies with a total of 303 participants, that met the criteria for meta-analysis.

The meta-analysis of before-after studies found moderate reductions in inattention and moderate-to-strong reductions in hyperactivity/impulsivity. It also reported moderate reductions in emotional problems and small-to-moderate reductions in behavioral problems.

The effect was even stronger among unmediated participants. There was a very strong reduction in inattention and a strong reduction in hyperactivity/impulsivity.

The meta-analysis of two-group control studies found strong reductions in inattention, but no effect on hyperactivity/impulsivity. It also found no significant effect on emotional and behavioral problems.

There was no sign of publication bias in any of the meta-analyses.

The authors concluded, "Our results suggest that PA intervention could improve ADHD-related symptoms, especially inattention symptoms. However, due to a lot of confounders, such as age, gender, ADHD subtypes, the lack of rigorous double-blinded randomized-control studies, and the inconsistency of the PA program, our results still need to be interpreted with caution."

February 21, 2022

Meta-analysis suggests regular exercise improves core symptoms and executive functions in child and adolescent ADHD

Meta-analysis Suggests Regular Exercise Improves Core Symptoms and Executive Functions in Child and Adolescent ADHD

A Chinese study team has performed an updated meta-analysis of randomized clinical trials (RCTs) published through July 2022, looking specifically at the effects of chronic exercise on ADHD core symptoms and executive functions in children and adolescents.

The researchers defined chronic to mean exercise interventions lasting at least six weeks, with the longest clocking in at well over a year (72 weeks). 

They only included RCTs with blinding of all assessors who measured the primary outcomes, to guard against any conscious or unconscious bias.

A total of 22 studies met criteria for inclusion in the series of meta-analyses they performed. The RCTs were widely distributed, with four from North America, three from Africa, three from Europe, eleven from Asia, and one from Oceania.

Three studies were rated as being at low risk of bias, the other 19 at moderate risk of bias.

Meta-analysis of eleven RCTs with a combined 514 participants reported a small-to-medium reduction in ADHD core symptoms. Between-study variation (heterogeneity) was moderate, and there was no indication of publication bias.

Breaking that down by age group, for children (eight RCTs, 357 children) the reduction in core symptoms was likewise small-to-medium, versus a medium effect size reduction among adolescents (three RCTs, 157 adolescents), with no heterogeneity.

When the control group received no treatment or was sedentary (8 RCTs, 422 participants), the effect size remained small-to-medium, whereas when the control group received education, it became large (two RCTs, 58 participants). 

Improvements in executive functions were even more pronounced. Meta-analysis of 17 RCTs with a combined 795 participants yielded a medium-to-large effect size reduction in executive functions overall. Heterogeneity was moderate, with absolutely no sign of publication bias.

More specifically, there was a medium effect size improvement in working memory (10 RCTs, 290 participants), a medium-to-large effect size improvement in cognitive flexibility (8 RCTs, 206 participants), and a large effect size improvement in inhibition (12 RCTs, 299 participants). 

Once again, adolescents benefited more than children. Whereas children showed medium effect size improvements in executive function (14 RCTs, 659 children), adolescents registered enormous improvements (3 RCTs, 136 adolescents).

One note of caution, though. Among RCTs rated low risk of bias, effect size improvements in both ADHD core symptoms (3 RCTs, 180 participants) and executive functions (2 RCTs, 86 participants) were small and did not reach statistical significance. That suggests a need for more and better RCTs to reach a more settled verdict.

For now, the authors concluded, “This meta-analysis suggests that CEIs [chronic exercise interventions] have small-to-moderate effects on overall core symptoms and executive functions in children and adolescents with ADHD.”

February 12, 2024

Meta-analysis Finds Little Evidence in Support of Game-based Digital Interventions for ADHD

ADHD treatment usually involves a combination of medication and behavioral therapy. However, medication can cause side effects, adherence problems, and resistance from patients or caregivers. 

Numerous systematic reviews and meta-analyses have evaluated the effects of non-pharmacological interventions on ADHD. With little research specifically examining game-based interventions for children and adolescents with ADHD or conducting meta-analyses to quantify their treatment effectiveness, a Korean study team performed a systematic search of the peer-reviewed medical literature to do just that.  

The Study: 

To be included, studies had to be randomized controlled trials (RCTs) that involved children and adolescents diagnosed with ADHD. The team excluded RCTs that included participants with psychiatric conditions other than ADHD.  

Eight studies met these standards. Four had a high risk of bias.  

Meta-analysis of four RCTs with a combined total of 481 participants reported no significant improvements in either working memory or inhibition from game-based digital interventions relative to controls. 

Likewise, meta-analysis of three RCTs encompassing 160 children and adolescents found no significant improvement in shifting tasks relative to controls. 

And meta-analysis of two RCTs combining 131 participants reported no significant gains in initiating, planning, organizing, and monitoring abilities, nor in emotional control

The only positive results were from two RCTs with only 90 total participants that indicated some improvement in visuospatial short-term memory and visuospatial working memory.  

There was no indication of effect size, because the team used mean differences instead of standardized mean differences.  

Conclusion:

The team concluded, “The meta-analysis revealed that game-based interventions significantly improved cognitive functions: (a) visuospatial short-term memory … and (b) visuospatial working memory … However, effects on behavioral aspects such as inhibition and monitoring … were not statistically significant, suggesting limited behavioral improvement following the interventions.” 

Simply put, the current evidence does not support the effectiveness of game-based interventions in improving behavioral symptoms of ADHD in children and adolescents. The only positive results were from two studies with a small combined sample size, which does not qualify as a genuine meta-analysis. All the other meta-analyses performed with larger sample sizes reported no benefits. 

Understanding Teen Health and Well-being in ADHD: A Fresh Perspective from the CDC

Recent research from the Centers for Disease Control and Prevention (CDC) highlights distinct health and social-emotional challenges faced by teens diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD). This study, published in the Journal of Developmental and Behavioral Pediatrics, offers critical insights directly from the teens themselves, providing a unique view often missed when relying solely on parent or clinical reports. 

Researchers analyzed nationally representative data from July 2021 through December 2022, comparing self-reported experiences of teens aged 12 to 17 with and without ADHD. Approximately 10% of teenagers had an ADHD diagnosis, and the findings reveal specific areas where teens with ADHD face notable difficulties. 

Teenagers with ADHD reported significantly higher rates of bullying victimization and struggles in making friends compared to their peers. Surprisingly, they were less likely to report a lack of peer support, suggesting complexities in how they perceive friendships and social networks. The study underscores the importance of directly engaging teens in assessing their social relationships, rather than solely relying on parental perspectives. 

Sleep difficulties emerged as another critical issue for teens with ADHD. About 80% reported problems like difficulty waking up and irregular wake times, markedly higher than their non-ADHD counterparts. Such disruptions can exacerbate attention difficulties and emotional regulation issues, further complicating daily life for these teens. 

Excessive screen time also stood out, with nearly two-thirds of teens with ADHD spending over four hours daily on screens, excluding schoolwork. This high screen usage is concerning, given its potential negative impact on physical and mental health, including sleep quality and social interactions. 

Notably, the study found no significant differences in physical activity levels or concerns about weight between teens with and without ADHD. This finding contrasts with previous studies that have highlighted lower physical activity among children with ADHD, suggesting the need for continued research on how physical activity is measured and encouraged in this population. 

The study’s authors emphasize the importance of health promotion interventions tailored specifically for teens with ADHD. By directly engaging teens and considering their unique perspectives, interventions can better address social-emotional well-being and healthy lifestyle behaviors, ultimately improving long-term outcomes for this vulnerable group. 

Overall, this research provides compelling evidence for healthcare providers, educators, and families to focus on supporting teens with ADHD in areas of social skills, sleep hygiene, and healthy screen time habits. Such targeted support can significantly enhance the quality of life and health outcomes for adolescents navigating the challenges of ADHD. 

Meta-analysis Reports No Significant Evidence for Efficacy of Neuromechanistic Treatments for Adult ADHD

The Background on ADHD Treatments, rTMS and tDCS:

Methylphenidate is known as the gold-standard treatment for ADHD, increasing dopamine concentrations and helping to focus. However, these psychostimulants may be less well-tolerated in adults. Adverse effects include decreased appetite, nausea, racing heartbeat, restlessness, nervousness, and insomnia. 

Neurofeedback is a non-pharmaceutical treatment that combines cognitive behavioral therapy techniques like conditioning and positive reinforcement with electroencephalography (EEG) feedback. Electrodes are placed on specific brain areas, guiding patients to regulate their brainwave activity. 

Repetitive transcranial magnetic stimulation (rTMS) uses electromagnetism to induce an electric field by passing a magnetic field through the scalp. Transcranial direct current stimulation (tDCS), on the other hand, directly applies an electric current through the scalp. Both repetitive transcranial magnetic stimulation (rTMS) and tDCS primarily target the outermost layers of neurons, as they are non-invasive methods. Nevertheless, both techniques are believed to affect deeper layers through interconnected neuronal networks.  

The Study:

A French research team conducted a systematic search of the peer-reviewed medical literature to perform a meta-analysis to explore the efficacy of these experimental treatment techniques. 

Eight studies – four using rTMS and another four using tDCS – met the inclusion criteria. Studies had to be randomized controlled trials (RCTs), and had to involve multiple sessions of treatment. Participants had to be adults previously diagnosed with ADHD.  

Outcomes were measured through self-rated scales, neuropsychological tests, and electrophysiological pre-post evaluations. 

Separate meta-analyses of the four tDCS RCTs combining 154 participants and of the four rTMS RCTs encompassing 149 participants likewise reported no significant improvements. In all cases variation in outcomes between studies was moderate, and there were no signs of publication bias. 

The Conclusion on Neuromechanistic Treatments for ADHD:

Meta-analysis of all eight studies with a combined total of 421 participants reported no significant improvements over controls. Narrowing down to studies that used sham controls likewise produced no significant improvements. So, despite the title of this study, these neuromechanistic treatments do not appear to be the future of treatment for adult ADHD.