Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
April 2, 2022

China is the outstanding economic growth story of the early twenty-first century. According to the World Bank, China has “experienced the fastest sustained expansion by a major economy in history – and has lifted more than 800 million people out of poverty.”
That expansion has been accompanied by major investments in medical research, and medical treatment capability, especially in the major urban centers that have spearheaded the boom. Life expectancy has risen from 71 in 2000 to 77 in 2019, nearing the U.S. level of 79.
Yet when it comes to pharmaceutical treatment of ADHD, China is an outlier, as revealed by a new study exploring the data in the two main medical insurance programs for its urban population.
The Urban Employee Basic Medical Insurance(UEBMI) covers both employers and employees in public and private workplaces, while the Urban Residents Basic Medical Insurance (BMI) covers the unemployed. As of 2014, these programs cover over 97% of urban residents. The China Health Insurance Research Association (CHIRA) database is a random sampling database from the UEBMI and UBMI databases.
The study population consisted of residents of the 63 cities in the CHIRA database from 2013 through 2017. Prescription prevalence was calculated by dividing the total number of patients prescribed ADHD medications in the CH IRA database by the urban population of the included cities, which was two hundred million as of 2017.
Other studies have found the prevalence of ADHD among Chinese children and adolescents to be about 6.5%, comparable to North American and European countries. Yet, the prescription prevalence of ADHD medications was 0.036% among those aged 0–14 years in 2017 in China. In other words, only about one in every two hundred youths with ADHD were being prescribed pharmaceutical treatments.
For further context, among other economically prosperous countries in Asia, Australia, North America, and Europe, the lowest prescription prevalence of ADHD medications is 0.27% in France, which is still over seven times higher than the Chinese level.
Among Chinese urban dwellers from 15 through 64 years of age, ADHD prescription prevalence in 2017 dropped by a further order of magnitude (over tenfold) to 0.003%, and among those 65 and older, to a scant 0.001%.
The Chinese study team suggested several likely contributing factors:
Lu Xu, XiaozhenLv, Huali Wang, Qingjing Liu, Shuzhe Zhou, Shuangqing Gao, Xin Yu, Siwei Deng, Shengfeng Wang, Zheng Chang, and Siyan Zhan, “Trends in Psychotropic Medication Prescriptions in Urban China From 2013 to2017: National Population-Based Study,” Frontiers in Psychiatry(2021), vol.12, Article 727453, published online,https://doi.org/10.3389/fpsyt.2021.727453. Macrotrends, “China Life Expectancy 1950-2021,” https://www.macrotrends.net/countries/CHN/china/life-expectancy. World Bank, China Overview, March 28, 2017, http://www.worldbank.org/en/country/china/overview.
Boys are three times as likely as girls to be diagnosed with ADHD, and anywhere from three to sixteen times more likely to be referred for treatment.
An international team of experts recently published a consensus statement addressing this discrepancy and offering guidance to rectify the imbalance and improve diagnosis and care for girls and women with ADHD. Here are some key conclusions.
ADHD symptoms:
-Experts caution that ADHD behaviors typically express themselves differently in boys than in girls.
-That in turn leads to gender-based biases in teachers and parents. In two studies in which teachers were shown vignettes of individuals with typical ADHD behaviors, switching from female to male names and pronouns led to higher rates of referral for support and treatment.
Comorbidity:
-A major reason for this different expression of ADHD in boys is that they have much higher rates of comorbid externalizing disorders, such as the conduct disorder and oppositional defiant disorder, leading them to break rules and get into fights in school. This no doubt contributes to lower rates of referral for girls.
-On the other hand, females are more likely to have comorbid internalizing disorders, such as emotional problems, anxiety, and depression. These may be interpreted as primary conditions, and the link to ADHD is missed altogether.
-Because ADHD has come to be associated with many externalizing disorders, it is then easy to fail to identify it when it is associated with internalizing disorders such as eating disorders.
-Untreated ADHD in girls can increase the risk of substance use disorders.
Associated vulnerabilities:
Children with ADHD are more likely to be unpopular with their peers and to experience rejection. Whereas boys are more likely to experience that rejection in physical ways, girls are more likely to experience it in social ways and through cyberbullying. That, in turn, contributes to lower self-esteem, which could explain some comorbid internalizing disorders.
Symptoms of hyperactivity/impulsivity, one of the two key components of ADHD, are associated with higher rates of risk-taking behavior:
- Like males with ADHD, females with ADHD have higher injury rates.
-Both males and females with ADHD are more likely to underachieve in school or drop out altogether.
-Overall, adolescents with ADHD become sexually active earlier, have more sexual partners, and are more frequently treated for sexually transmitted diseases than their normally developing peers. That also leads to higher rates of teenage and unplanned pregnancies.
-As with males with ADHD, females with ADHD have higher rates of criminal behavior than normally developing peers. While females with ADHD are still half as likely to be convicted of a crime than males with ADHD, one study showed they nevertheless are eighteen times more likely to be convicted of a crime than normally developing females.
Compensatory or coping behaviors:
- Girls may turn to drink alcohol, smoking cannabis, smoking cigarettes, or vaping nicotine to cope with emotional anguish, social isolation, and rejection.
-Some girls may seek to build social support through high-risk activities such as joining a gang, becoming promiscuous, and engaging in criminal behavior.
Triggers for possible referral
Ages 5-11:
-Bedwetting, nail-biting
Ages 5-16:
-Early sexualized behavior
Ages 5-18:
-Suspensions, expulsions, frequent detentions
-Poor attendance/truancy
-Consistent lateness, poor organization
-Academic difficulties, low academic self-esteem
-Conduct problems, conflicts with parents and peers
-Bullying (usually as victims)
-Regular tobacco and alcohol use
- Obesity and other eating disorders
- Repeated injuries
- Sleep difficulties
- Executive function difficulties
- Extreme emotional meltdowns
Ages 12 and above:
- Relationship problems, anxiety about relationships
- Social rejection, isolation
- Substance abuse, including alcohol
- Risky sexual behavior
- Underage or unwanted pregnancy
- Delinquency or criminal behavior (including shoplifting, vandalism)
- Low self-esteem
- Self-harm, suicidality
Ages 16 and above:
- Dropping out of school
- Losing jobs
- Parenting problems
- Criminality
- Financial difficulties
- Traffic crashes
- Internalizing conditions: depression, anxiety
Ages 18 and above:
- Gambling problems, compulsive shopping
- Personality disorder
- Chronic fatigue syndrome
- Fibromyalgia
The key message is not to disregard females because they do not present with the externalizing behavioral problems, or the disruptive, hard-to-manage boisterous, or loud behaviors typically associated with males with ADHD.
Diagnosis
The authors emphasize that "comprehensive assessment should be completed to accurately capture the symptoms of ADHD across multiple settings, their persistence over time, and associated functional impairments. High rates of comorbidity are typically present. The assessment process is typically tripartite, involving the use of rating scales, a clinical interview, and ideally objective information from informants or school reports."
Rating scales: Ideally rely on those that provide female norms, making them more sensitive to female presentation.
Clinical interviews:
-Be mindful of age-appropriate, common-occurring conditions in females with ADHD, including autistic spectrum disorder, tics, mood disorders, anxiety, eating disorders, fibromyalgia, and chronic fatigue syndrome.
- Be alert to signs of self-harming behaviors(especially cutting), which peak in adolescence and early adulthood.
-Given that heritability of ADHD is high, ranging between 70-80% in both children and adults, be mindful that informants who are family members may also have ADHD (possibly undiagnosed) which may affect their judgment of "typical" behavior. The assessor should obtain specific examples of behavior from the informant and use these to make clinically informed judgments, rather than relying upon the informants' perception of what is typical or atypical.
Treatment
Pharmacological:
- Recommendations for medication do not differ by sex, except that pharmacological treatment is generally not advised during pregnancy or breastfeeding.
- A systematic review and network meta-analysis recommended methylphenidate for children and adolescents and amphetamines for adults, taking into account both efficacy and safety. Larger confidence intervals about the tolerability and efficacy of bupropion, clonidine, and guanine were reported, indicating less conclusive results about the efficacy and tolerability of these oral medications. The use of medication should be followed up over time to verify if medications are effective and well-tolerated, and to manage the effects of related conditions(e.g. anxiety, depression) if they emerge.
Non-pharmacological:
- Cognitive behavioral therapy (CBT) together with psychoeducation (which can be provided to both patients and parent/guardians together or independently) are the best forms of psychological treatment.
- Parents and other guardians of teenage girls need to be shown how to identify deliberate self-harming or risky behavior.
- Adolescent girls may require assistance in addressing risky behavior (sexual risk, substance misuse) and improving self-management. Girls with ADHD are more vulnerable to sexual exploitation and have higher rates of early and unwanted pregnancy.
- Adults are more likely to require interventions to address employment problems, child-rearing, and parenting. Women with ADHD are also more vulnerable to sexual exploitation, including physical and sexual violence.
- Interventions should support attendance and engagement with education to avoid early school-leaving, diminished educational attainment, and associated vulnerabilities. While externalizing conditions have a greater impact on classroom behavior, internalizing conditions affect motivation and thus the ability to benefit from education.
Institutional outreach
- Educational, social care, occupational, and criminal justice system professionals should be trained to improve the detection and referral of ADHD in girls and women.
- Flexible learning systems and support with childcare can help women with ADHD return to education after having a baby.
- Depending on the country of residence, women who disclose their disability to their employer may be entitled to reasonable adjustments to the workplace to accommodate their condition.
- Low to no-cost apps are available to assist persons with ADHD with itineraries, lists, and reminders.
- Career planning should take into account that some occupations may provide a better fit for women with ADHD: "some individuals with ADHD show a preference for more stimulating environments, active, hands-on, or busy and fast-paced jobs."
- Persons with ADHD, both male and female, make up roughly a quarter of the prison population: "Evidence indicates that ADHD treatment is associated with reduced rates of criminality, is tolerated and effective in prison inmates, and improves their quality of life and cognitive function. This has led to speculation that effective identification and treatment of ADHD may help to reduce re-offending."
The authors concluded, "To facilitate identification, it is important to move away from the previously predominating disruptive boy stereotype of ADHD and understand the more subtle and internalized presentation that predominates in girls and women."
There have been indications that infants who have difficulty sleeping are more likely to later develop ADHD in childhood. Would this hold up in a large nationwide cohort study?
Noting that "Norway has several national health registries with compulsory and automatically collected information," and "registries can be linked on an individual level, making it possible to conduct large cohort studies," a Norwegian team of researchers studied the association between sleep-inducing medications prescribed to infants under three years old and diagnoses of ADHD between the ages of five and eleven.
Norway has a national health insurance system that covers all residents, and pays in full for youths under 16 years old. Norwegian pharmacies must register all dispensed prescriptions into a national register as a prerequisite for reimbursement.
The study included all children born in Norway from 2004 through 2010, minus those who died or emigrated, leaving a total of 410,555 children.
In addition to traditional hypnotic and sedative drugs and melatonin, the study looked at antihistamines, which though intended for respiratory use, are frequently used for gentle sedation.
The two most frequently prescribed drugs were found to be dexchlorpheniramine (girls 7%, boys 8%) and trimeprazine(girls 3%, boys 4%), both of which are antihistamines.
After adjusting for parental education as an indicator of family socioeconomic status, and parental ADHD as indicated by prescription of ADHD medications, girls who had been prescribed sleeping medications on at least two occasions were twice as likely to subsequently develop ADHD, and boys about 60 percent more likely. For, dexchlorpheniramine equivalent associations were not statistically significant for either boys or girls. But girls prescribed trimeprazine on at least two occasions were almost three times as likely to subsequently develop ADHD, and boys were well over twice as likely.
A limitation of the study was that there was no direct data for sleep diagnosis. The authors noted, "The Norwegian prescription database does not contain diagnosis unless medications are reimbursed and hypnotics are not reimbursed for insomnia or sleep disturbances in general. Sleep diagnoses were also not available from the Norwegian Patient Registry, as there seems to be a clinical tradition for not using the ICD- 10G47 Sleep Disorders diagnosis for children."
The authors concluded, "It has previously been shown that infant regulation problems, including sleep problems, are associated with ADHD diagnosis. We replicate this finding in a large cohort, where continuous data collection ensures no recall bias and no loss to follow-up. We find that the use of hypnotic drugs before 3 years of age, signifying substantial sleeping problems, increases the risk of a later ADHD diagnosis. This was especially true for the antihistaminic drug, trimeprazine."
Noting that to date, no study investigated potential behavioral and neural markers in adults with subthreshold ADHD as compared to adults with full syndrome ADHD and healthy controls, the German team of researchers at the University of Tübingen out to do just that, recruiting volunteers through flyers and advertisements.
Their ADHD sample consisted of 113 adults between 18 and 60 years of age (mean age 38) who fulfilled the DSM-IV-TR criteria of ADHD and were either not on medication or a steady dose of medication over the prior two months.
Another 46 participants (also mean age 38), whose symptoms did not reach the DSM-IV-TR criteria, were assigned to the group with subthreshold ADHD.
The control sample was comprised of 42 healthy participants (mean age 37).
Individuals with schizophrenia, bipolar disorder, borderline personality disorder, epilepsy, or traumatic brain injury were excluded from the sample, as were those with current substance abuse or dependence.
All participants were German-speaking Caucasians. There were no significant differences in gender, age, education, or verbal/nonverbal intelligence among the three groups.
Participants first completed an online pre-screening, which was followed up with an interview to confirm the ADHD diagnosis.
ADHD impairs executive functions, "defined as the 'top-down' cognitive abilities for maintaining problem-solving skills to achieve future goals." The researchers explored three categories of executive functioning: 1) capacity for inhibition, "the ability to inhibit dominant, automatic, or prepotent responses when necessary- 2) ability to shift, enabling smooth switching between tasks or mental sets; and 3) ability to update, "updating and monitoring of working memory representations." Participants took a battery of neuropsychological tests to assess performance in each category.
Significant differences emerged between the group with ADHD and healthy controls in all measures except one: the STROOP Reading test. But there were no significant differences between participants suffering from subthreshold and full-syndrome ADHD. Nor were there any significant differences between those with subthreshold ADHD and healthy controls.
The researchers also recorded electroencephalograms(EEGs) for each participant. In healthy individuals, there is little to no association between resting-state EEG spectral power measures and executive functions. In individuals with ADHD, some studies have indicated increased theta-to-beta ratios, while others have found no significant differences. This study found no significant differences between the three groups.
The authors concluded, "The main results of the study can be summarized as follows: First, increased executive function deficits (in updating, inhibition, and shifting functions) could be observed in the full syndrome ADHD as compared to the healthy control group while, on the electrophysiological level, no differences in the theta to the beta ratio between these groups were found. Second, we observed only slightly impaired neuropsychological functions and no abnormal electrophysiological activity in the subthreshold ADHD sample. Taken together, our data suggest some practical uses of the assessment of objective cognitive markers but no additional value of examining electrophysiological characteristics in the diagnosis of subthreshold and full syndrome ADHD in adulthood."
They added, "These findings deeply question the value of including resting EEG markers into the diagnostic procedure and also have implications for standard neurofeedback protocols frequently used in the treatment of ADHD, where patients are trained to reduce their theta power while simultaneously increasing beta activity."
What do we mean by expert? In simple terms, an expert possesses in-depth knowledge and specialized training in a particular field. In order to be considered an expert in any field, a person must have both deep knowledge of and competence in their specific area of expertise. Experts have a background that includes education, research, and experience. In the world of mental health and psychology, this typically means formal credentials (a PhD, MD, etc) in addition to years of study, peer-reviewed publications, and/or extensive clinical experience.
Experts are recognized by their peers (and often by the public) as reliable authorities on a specific topic. Experts usually don’t make big claims without evidence; instead, they cite studies and speak cautiously about what the evidence shows.
Tip: Those looking for likes and clicks will often speak in absolutes (e.g., “refined sugar makes your ADHD worse, but the Keto Diet will eliminate ADHD symptoms”) while experts will use language that emphasizes evidence (e.g., “research has proven that there is no ‘ADHD Diet’, but some evidence has suggested that certain individuals with ADHD may benefit from such dietary interventions as limiting food coloring or increasing omega fatty acids.”)
Social media has created an incredible opportunity for those with ADHD to gain access to invaluable resources, including the creation of communities by and for those with ADHD. Many people with ADHD report feeling empowered and less alone by connecting with others online. These online social platforms provide a space for those with ADHD to share their own perspectives and their lived experience with the disorder. Both inside and outside of mental health-related communities, social media is a powerful tool for sharing information, reducing stigma, and helping people find community. When someone posts about their own ADHD challenges or tips, it can reassure others that they’re not the only ones facing these issues. This kind of peer support is valuable and affirming.
It is vital for those consuming this media, however, to remember that user-generated content on social media is not vetted or regulated. Short TikTok or Instagram videos are designed to grab attention, not to teach nuance or cite scientific studies. As it turns out, most popular ADHD posts are misleading or overly simplistic, at best. One analysis of ADHD TikTok videos found that over half were found to be “misleading” by professionals. Because social feeds reinforce what we already believe (the “echo chamber” effect, or confirmation bias), we can easily see only content that seems to confirm our own experiences, beliefs, or fears.
Stories aren’t a substitute for expert guidance.
It’s important to recognize the difference between personal experience and general expertise. Having ADHD makes you an expert on your ADHD, but it does not make you an expert on ADHD for everyone. Personal stories are not scientific facts. Even if someone’s personal journey is true, the same advice or experience may not apply to others. For instance, a strategy that helps one person focus might have no effect– or possibly even a negative effect– on someone else.
Researchers have found that most ADHD content on social media is based on creators’ own experiences, not on systematic research. In one study, almost every TikTok ADHD creator who listed credentials actually just cited their personal story. Worse, about 95% of those videos never noted that their tips might not apply to everyone (journals.plos.org.) In other words, they sound absolute even though they really only reflect one person’s situation. It’s easy to misunderstand the condition if we take those singular experiences as universal facts.
So how can you tell when someone is speaking from expertise rather than personal experience or hearsay? Experienced professionals usually speak cautiously, rather than in absolutes. They tend to say things like “research suggests,” “some studies show,” or “evidence indicates,” rather than claiming something always or never happens. As one health-communication guide puts it, a sign of a trustworthy source is that they do not speak in absolutes; instead, they use qualifiers like “may,” “might,” or refer to specific studies. For example, an expert might say, “Some people with ADHD may have difficulty with organization,” instead of “ADHD people always lose things.”
Real experts also cite evidence. In science and psychology, experts usually share knowledge through peer-reviewed articles, textbooks, or professional conferences – not just social media posts. Reliable health information is typically backed by references to studies published in reputable journals.
If someone makes a claim online, ask: Do they point to research, or is it just their own testimony? This is why it’s wise to prefer content where the author is a recognized authority (like a doctor or researcher) and where references to scientific studies or official guidelines are provided. In fact, advice from sites ending in “.gov”, “.edu”, or “.org” (government, university, or professional organizations) tends to be more reliable than random blogs. When in doubt, look up who wrote the material and whether it cites peer-reviewed research.
When navigating mental health information online, remember these key points:
If you see sweeping statements like “This one habit will predict if you have ADHD” or “Eliminating this one food will cure your ADHD symptoms”--- that’s a red flag. Instead, the hallmark of expert advice is a tone of humility (“evidence suggests,” “it appears that,” etc.), clear references to studies or consensus statements, and an acknowledgment that individual differences exist.
At the same time, we need to acknowledge that community voices are incredibly valuable – they help us feel understood and less alone. The goal is not to dismiss personal stories, but to balance them with facts and evidence-based information. Let lived experience spark questions, but verify important advice with credible sources. Follow trusted organizations (for example, the National Institutes of Health, CDC, or ADHD specialist groups) and mental health professionals who communicate carefully. Use the online ADHD community for support and sharing tips, but remember it’s just one piece of the puzzle.
By being a savvy reader (checking credentials, looking for cited evidence, and spotting overgeneralizations), you can make the most of online ADHD content. In doing so, you give yourself both the empathy of community and the accuracy of real expertise. That way, you’ll be well-equipped to separate helpful insights from hype and to keep learning from both personal stories and science-based experts.
Stimulant medications have long been considered the default first-line treatment for attention-deficit/hyperactivity disorder (ADHD). Clinical guidelines, prescribing practices, and public narratives all reinforce the idea that stimulants should be tried first, with non-stimulants reserved for cases where stimulants fail or are poorly tolerated.
I recently partnered with leading ADHD researcher Jeffrey Newcorn for a Nature Mental Health commentary on the subject. We argue that this hierarchy deserves reexamination. It is important to note that our position is not anti-stimulant. Rather, we call into question whether the evidence truly supports treating non-stimulants as secondary options, and we propose that both classes should be considered equal first-line treatments.
Stimulants have earned their reputation as the go-to drug of choice for ADHD. They are among the most effective medications in psychiatry, reliably reducing core ADHD symptoms and improving daily functioning when properly titrated and monitored. However, when stimulant and non-stimulant medications are compared more closely, the gap between them appears smaller than commonly assumed.
Meta-analyses often report slightly higher average response rates for stimulants, but head-to-head trials where patients are directly randomized to one medication versus another frequently find no statistically significant differences in symptom improvement or tolerability. Network meta-analyses similarly show that while some stimulant formulations have modest advantages, these differences are small and inconsistent, particularly in adults.
When translated into clinical terms, the advantage of stimulants becomes even more modest. Based on existing data, approximately eight patients would need to be treated with a stimulant rather than a non-stimulant for one additional person to experience a meaningful benefit. This corresponds to only a 56% probability that a given patient will respond better to a stimulant than to a non-stimulant. This difference is not what we would refer to as “clinically significant.”
One reason non-stimulants may appear less effective is the way efficacy is typically reported. Most comparisons rely on standardized mean differences, a method of averages that may mask heterogeneity of treatment effects. In reality, ADHD medications do not work uniformly across patients.
For example, evidence suggests that response to some non-stimulants, such as atomoxetine, is bimodal: this means that many patients respond extremely well, while others respond poorly, with few in between. When this happens, average effect sizes can obscure the fact that a substantial subgroup benefits just as much as they would from a stimulant. In other words, non-stimulants are not necessarily less effective across the board, but that they are simply different in who they help.
In our commentary, we also highlight structural issues in ADHD research. Stimulant trials are particularly vulnerable to unblinding, as their immediate and observable physiological effects can reveal treatment assignment, potentially inflating perceived efficacy. Non-stimulants, with slower onset and subtler effects, are less prone to this bias.
Additionally, many randomized trials exclude patients with common psychiatric comorbidities such as anxiety, depression, or substance-use disorders. Using co-diagnoses as exclusion criteria for clinical trials on ADHD medications is nonviable when considering the large number of ADHD patients who also have other diagnoses. Real-world data suggest that a large proportion of individuals with ADHD would not qualify for typical trials, limiting how well results generalize to everyday clinical practice.
Standard evaluations of medication tolerability focus on side effects experienced by patients, but this narrow lens misses broader societal consequences. Stimulants are Schedule II controlled substances, which introduces logistical barriers, regulatory burdens, supply vulnerabilities, and administrative strain for both patients and clinicians.
When used as directed, stimulant medications do not increase risk of substance-use disorders (and, in fact, tend to reduce these rates); however, as ADHD awareness has spread and stimulants are more widely prescribed, non-medical use of prescription stimulants has become more widespread, particularly among adolescents and young adults. Non-stimulants do not carry these risks.
Non-stimulants are not without drawbacks themselves, however. They typically take longer to work and have higher non-response rates, making them less suitable in situations where rapid results are essential. These limitations, however, do not justify relegating them to second-line status across the board.
This is a call for abandoning a one-size-fits-all approach. Instead, future guidelines should present stimulant and non-stimulant medications as equally valid starting points, clearly outlining trade-offs related to onset, efficacy, misuse risk, and practical burden.
The evidence already supports this shift. The remaining challenge is aligning clinical practice and policy with what the data, and patient-centered care, are increasingly telling us.
Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.
This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the “stimulant-first” approach, which is currently used by most prescribers.
From this study, we hope to learn:
Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”
Who will be in the study?
We will enroll about 1,000 children and adolescents, ages 6 to 16, who:
We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.
How will the treatments be assigned?
This is a randomized comparative effectiveness trial, which means:
Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.
What will participants be asked to do?
Each family will be followed for 12 months. We will collect information at:
At these times:
We will also track:
Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.
How will we analyze the results?
Using standard statistical methods, we will:
All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?
Why is this study necessary now?
This study addresses a critical, timely gap in ADHD care:
In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.
This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY). It will be conducted at nine sites across the USA.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info